University of South Carolina Scholar Commons

Theses and Dissertations

Spring 2019

Modeling complex oxides: Thermochemical behavior of nepheline-forming Na-Al-Si-B-K-Li-Ca-Mg-Fe-O and hollandite-forming Ba-Cs-Ti-Cr-Al-Fe- Ga-O systems

Stephen A. Utlak

Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the <u>Nuclear Engineering Commons</u>

Recommended Citation

Utlak, S. A. (2019). Modeling complex oxides: Thermochemical behavior of nepheline-forming Na-Al-Si-B-K-Li-Ca-Mg-Fe-O and hollandite-forming Ba-Cs-Ti-Cr-Al-Fe- Ga-O systems. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/5153

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.

Modeling complex oxides: Thermochemical behavior of nepheline-forming Na-Al-Si-B-K-Li-Ca-Mg-Fe-O and hollandite-forming Ba-Cs-Ti-Cr-Al-Fe-Ga-O systems

by

Stephen A. Utlak

Bachelor of Science Clemson University, 2011

Master of Engineering University of South Carolina, 2013

Submitted in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy in

Nuclear Engineering

College of Engineering and Computing

University of South Carolina

2019

Accepted by:

Theodore M. Besmann, Major Professor

Travis W. Knight, Committee Member

Jamil A. Khan, Committee Member

Vijay Jain, Committee Member

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

© Copyright by Stephen A. Utlak, 2019 All Rights Reserved.

Dedication

To my loved ones for their unwavering support. Without your encouragement and belief in me, this would not have been possible.

Acknowledgements

I gratefully acknowledge the financial support provided by the U.S. Department of Energy Waste Treatment and Immobilization Plant Project, Albert Kruger, Michael Schweiger, and Chuck Henager for their involvement with this research project, and Ted Besmann for advising me throughout my dissertation work.

Abstract

High concentrations of Na₂O and Al₂O₃ in the liquid high-level radioactive waste (HLW) stored at the Hanford Site can cause nepheline (NaAlSiO₄) to precipitate in a vitrified monolithic waste form upon cooling. Nepheline phase formation removes glass-former SiO₂ and -modifier Al₂O₃ from the immobilization matrix in greater proportion to alkalis, which can reduce glass durability and consequently increase the leach rate of radionuclides into the surrounding environment.

Current uncertainty in defining the HLW glass composition region prone to precipitating nepheline necessitates targeting a conservative waste loading, which raises operational costs by extending the liquid radioactive waste disposal mission and increases the required permanent repository storage capacity. An accurate thermochemical representation of HLW glass compositions is necessary to obtain a comprehensive understanding of the composition-temperature space for nepheline formation, which can facilitate the development of a phase field model of the mesoscale microstructural evolution of nepheline crystallization in HLW glass. As such an understanding of nepheline nucleation and grain growth kinetic behavior may lead to significant improvements in the production efficiency of durable HLW glass, generating thermochemical descriptions of the constituent phases is of primary importance.

Thus, a database consisting of the oxides of the nepheline-forming Na₂O-Al₂O₃-SiO₂ system and HLW glass nepheline solutes B₂O₃, K₂O, CaO, Li₂O, MgO, Fe₂O₃, and FeO has been developed to yield a thermochemical model capable of characterizing nepheline precipitation in HLW glass at equilibrium. Due to their high molar concentrations within vitrified glass, Na₂O, Al₂O₃, B₂O₃, and SiO₂ were considered major oxides whereas more dilute B₂O₃, K₂O, CaO, Li₂O, MgO, Fe₂O₃, and FeO were treated as minor constituents. All pseudo-binary systems composed of the major as well as majorminor oxide systems were thermodynamically assessed according to the CALculation of PHAse Diagrams (CALPHAD) methodology. Additionally, all pseudo-ternary systems consisting of the major oxides were assessed due to the increased probability of interactions between these higher concentration oxides. Gibbs energies of solid solution phases and the oxide liquid were modeled using the compound energy formalism (CEF) and twosublattice partially ionic liquid (TSPIL) model, respectively.

Accuracy of the thermodynamic database was validated by comparing model calculations to HLW glass experimental data. Both annealed and canister centerline cooled (CCC) glass sample data were considered. Additionally, nepheline phase compositional data was included for comparison with database computations. Results of these comparisons indicate that the database-derived calculations agree well with HLW glass experimental data. As phase precipitation in a CCC glass sample is dependent on kinetics, however, a phase field or similar model will need to be utilized to obtain a non-equilibrium description of CCC HLW glass behavior, which in turn often require accurate Gibbs energies of phases.

vi

Hollandite has been studied as a candidate ceramic waste form for the disposal of HLW due to its inherent leach resistance and ability to immobilize alkaline-earth metals such as Cs and Ba at defined lattice sites in the crystallographic structure. The chemical and structural complexity of hollandite-type phases with a large number of potential additives and compositional ranges for high-level waste immobilization would require impractical systematic experimental exploration. Modeling the equilibrium behavior of the complex hollandite-forming oxide waste system would aid in the design and processing of hollandite waste forms by predicting their thermodynamic stability. Thus, a BaO-Cs₂O-TiO₂-Cr₂O₃-Al₂O₃-FeO-Ga₂O₃ thermodynamic database was developed according to the CALPHAD methodology. The CEF was used to model solid solutions such as hollandite while the TSPIL model characterized the oxide melt. The database was validated by experimental hollandite compositional data, and an isothermal BaO-Cs₂O-TiO₂ pseudo-ternary diagram with added hollandite solutes was generated to extrapolate phase equilibrium behavior to regions not experimentally explored.

TABLE OF CONTENTS

Dedication iii
Acknowledgementsiv
Abstractv
List of Tables xi
List of Figuresxiii
Chapter 1 Background1
1.1. FactSage
Chapter 2 Literature Review
2.1. Nepheline precipitation7
2.2. Nepheline experimental observations
2.3. Selection of oxides to construct database and systems to assess
2.4. CALPHAD methodology overview
2.5. Thermodynamic modeling
2.6. Tables
2.7. Figures
Chapter 3 Thermodynamic Assessment of the Pseudoternary Na ₂ O-Al ₂ O ₃ -SiO ₂ System
3.1. Abstract
3.2. Introduction
3.3. Nepheline Precipitation
3.4. Thermodynamic Modeling
3.5. Solution Phase Descriptions
3.6. Discussion

3.7. Summary	
3.8. Acknowledgements	
3.9. Tables	
3.10. Figures	55
3.11. Copyright permission	
Chapter 4 Thermodynamic Assessment of the Na ₂ O-Al ₂ O ₃ -SiO ₂ -B ₂ O ₃ Pseudo-Binary and -Ternary Systems	70
4.1. Abstract	
4.2. Introduction	
4.3. Literature review of experimental data	
4.4. Thermodynamic modeling and optimization	
4.5. Results and discussion	
4.6. Conclusion	
4.7. Tables	
4.8. Figures	
4.9. Copyright permission	
Chapter 5 Expansion of Database to Include K ₂ O, Li ₂ O, CaO, Fe ₂ O ₃ , FeO, and MgO	119
5.1. Introduction	
5.2. Expanded liquid phase	120
	121
5.3. Solid solutions in major-minor oxide systems	
5.3. Solid solutions in major-minor oxide systems5.4. Stoichiometric compounds of expanded database	
 5.3. Solid solutions in major-minor oxide systems 5.4. Stoichiometric compounds of expanded database 5.5. Addition of O₂ molecule 	121
 5.3. Solid solutions in major-minor oxide systems	
 5.3. Solid solutions in major-minor oxide systems	
 5.3. Solid solutions in major-minor oxide systems	

5.10. Figures
Chapter 6 Validating HLW Thermodynamic Database to Experimental Data171
6.1. Introduction171
6.2. Optimization of nepheline solid solution to compositional data 172
6.3. Comparison of computed phases to those observed in HLW compositions 173
6.4. Scheil-Gulliver cooling compared to equilibrium calculations
6.5. Suggested future work 177
6.6. Tables
6.7. Figures
Chapter 7 Thermodynamic Assessment of the Hollandite High-Level Radioactive Waste Form
7.1. Abstract
7.2. Introduction
7.3. Identifying oxide systems to address
7.4. Background 192
7.5. Thermodynamic modeling and optimization 195
7.6. Results and discussion
7.7. Conclusion
7.8. Acknowledgements
7.9. Tables
7.10. Figures
7.11. Copyright permission
References

List of Tables

Table 2.1. Glass composition range covered by CVS-1 & CVS-2 studies
Table 2.2. Oxide composition of HLW-E-AL-27 glass
Table 3.1. Enthalpy, entropy, and heat capacity constant values of specified compounds
Table 3.2. Model parameters for solid solutions
Table 3.3. Model parameters for oxide liquid
Table 3.4. Invariant points of Na ₂ O-Al ₂ O ₃ -SiO ₂ pseudobinary subsystems
Table 3.5. Invariant points of Na ₂ O-Al ₂ O ₃ -SiO ₂ isopleths 53
Table 3.6. Invariant points of Na ₂ O-Al ₂ O ₃ -SiO ₂ system (Fig. 3.10)
Table 4.1. Enthalpy, entropy, and heat capacity constant values of specified compounds
Table 4.2. Model parameters for solid solution (all °G and L parameter units are J/mol)
Table 4.3. Model parameters for oxide liquid (all °G and L parameter units are J/mol) 100
Table 4.4. Invariant points of Na ₂ O, Al ₂ O ₃ , and SiO ₂ pseudo-binary subsystems with B ₂ O ₃ as well as NaBO ₂ -Al ₂ O ₃ system
Table 4.5. Liquidus temperatures of Na ₂ O-B ₂ O ₃ -SiO ₂ system (Fig. 4.8) 103
Table 4.6. Invariant points of Na ₂ O-B ₂ O ₃ -SiO ₂ system (Fig. 4.8) 104
Table 4.7. Liquidus temperatures of Na ₂ O-B ₂ O ₃ -Al ₂ O ₃ system (Fig. 4.13) 105
Table 4.8. Liquidus temperatures of Al ₂ O ₃ -B ₂ O ₃ -SiO ₂ system (Fig. 4.15) 106

Table 5.1. Previous assessments used as a bases for assessments conducted in this work	. 127
Table 5.2. TSPIL model parameters for assessments of the major-minor oxide, NaAlSiO ₄ - NaFeSiO ₄ , and NaAlSiO ₄ -NaFeSi ₂ O ₆ systems	128
Table 5.3. Gibbs energy functions of liquid oxides	. 132
Table 5.4. Solid solution model parameters assessed as part of expanded database	. 133
Table 5.5. Thermodynamic values for Fe-Spinel, Mg-Spinel, and halite solid solution endmembers	. 135
Table 5.6. Gibbs energy functions of stoichiometric solid oxides	. 139
Table 5.7. Gibbs energy function of gaseous O ₂	. 149
Table 6.1. Oxide compositions of HLW glass samples	. 179
Table 6.2. Stable crystalline phases and cooling times for CCC HLW glass samples ^a	180
Table 6.3. Secondary phases experimentally observed in annealed/quenched and CCC HLW glass samples	. 181
Table 7.1. Oxide compositions of specified waste types	. 212
Table 7.2. Enthalpy, entropy, and heat capacity constant values of specified compounds	213
Table 7.3. Model parameters for solid solutions and oxide melt (all $^{\circ}G$ and L parameter units are J/mol)	216
Table 7.4. Targeted, measured, and calculated hollandite phase compositions for specified waste types	. 217
Table 7.5. Calculated secondary phase amounts as well as experimentally observed secondary phases that were stable for each waste type	218
Table 7.6. Hollandite phase standard enthalpies of formation from constituent elements	219
Table 7.7. Stable phases displayed in the isothermal BaO-Cs ₂ O-TiO ₂ diagram with Cr, Al, and Fe additives (Fig. 7.4)	220
Table 7.8. Stable phases and amounts of \times and \bigcirc symbols located in Fig. 7.4	. 220

List of Figures

Fig. 2.1. Na ₂ O-Al ₂ O ₃ -SiO ₂ liquidus projections with nepheline discriminator	26
Fig. 2.2. Nepheline volume percent in CCC glass samples versus normalized SiO ₂ concentration for 747 HLW glass compositions	26
Fig. 2.3. Transmission optical micrographs of slowly cooled glass samples showing nepheline phase in matrix	27
Fig. 2.4. Nepheline present in slowly cooled medium-alumina glass sample	27
Fig. 2.5. Transmission optical micrographs of isothermally heat treated glass simples with nepheline crystals	27
Fig. 2.6. SEM micrographs of nepheline crystals with various morphologies	28
Fig. 2.7. Crystal structure of nepheline	28
Fig. 2.8. CALPHD assessment flowchart	29
Fig. 2.9. Block diagram of Gibbs'ian thermochemical method	29
Fig. 3.1. Computed Al ₂ O ₃ -SiO ₂ pseudobinary phase diagram with experimental measurements shown as points.	55
Fig. 3.2. Computed Na ₂ O-Al ₂ O ₃ pseudobinary phase diagram with experimental measurements shown as points	55
Fig. 3.3. Computed Na ₂ O-SiO ₂ pseudobinary phase diagram with experimental measurements shown as points	56
Fig. 3.4. Partial Gibbs energy for $Na_2O(\beta)$ within the Na_2O-SiO_2 system with experimental measurements shown as points.	56
Fig. 3.5. Computed curve of the enthalpy of mixing for Na ₂ O-SiO ₂ at 1450 K with experimental measurements shown as points.	57

www.manaraa.com

Fig. 3.6. Computed activity curve for Na ₂ O in Na ₂ O-SiO ₂ liquid with experimental measurements shown as points	
Fig. 3.7. Computed Na ₂ Si ₂ O ₅ -NaAlSi ₃ O ₈ isoplethal section with experimental measurements shown as points.	58
Fig. 3.8. Computed activity of Na ₂ O in the liquid phase as a function of Na ₂ O/(Na ₂ O+ SiO ₂) for fixed Al ₂ O ₃ contents. Experimental measurements shown as points.	
Fig. 3.9. Isothermal section of the Na ₂ O-Al ₂ O ₃ -SiO ₂ system at 1873 K with experimental measurements shown as points.	60
Fig. 3.10. Liquidus projections and invariant points computed for the Na ₂ O-Al ₂ O ₃ -SiO ₂ system	61
Fig. 3.11. Computed Na ₂ Si ₂ O ₅ -NaAlSiO ₄ isoplethal section with experimental measurements shown as points.	
Fig. 3.12. Computed Na ₂ SiO ₃ -NaAlO ₂ isoplethal section with experimental measurements shown as points.	
Fig. 3.13. Computed Na ₂ SiO ₃ -NaAlSiO ₄ isoplethal section with experimental measurements shown as points.	63
Fig. 3.14. Computed NaAlO ₂ -SiO ₂ isoplethal section with experimental measurements shown as points.	
Fig. 3.15. Computed NaAlSi ₃ O ₈ -Al ₂ O ₃ isoplethal section with experimental measurements shown as points.	64
Fig. 3.16. Computed NaAlSiO ₄ -Al ₂ O ₃ with experimental measurements shown as points.	64
Fig. 4.1. Computed Na ₂ O-B ₂ O ₃ pseudo-binary phase diagram with experimental measurements shown as points.	
Fig. 4.2. Computed curve of enthalpy of mixing for Na ₂ O-B ₂ O ₃ with experimental measurements shown as points	107
Fig. 4.3. Computed activity curve of liquid B ₂ O ₃ in Na ₂ O-B ₂ O ₃ system with experimental measurements shown as points	
Fig. 4.4. Partial Gibbs energy of liquid Na ₂ O in Na ₂ O-B ₂ O ₃ system referred to $0.5Na_2O + 0.95B_2O_3$ with experimental measurements shown	
as points.	

Fig. 4.5. Computed B ₂ O ₃ -Al ₂ O ₃ pseudo-binary phase diagram with experimental measurements shown as points.	. 109
Fig. 4.6. Computed Na ₂ O-B ₂ O ₃ -SiO ₂ isopleth with Na ₂ O mole fraction of 10^{-7} and experimental measurements shown as points	. 109
Fig. 4.7. Computed B ₂ O ₃ -Al ₂ O ₃ -SiO ₂ isopleth with Na ₂ O mole fraction of 10^{-7} and experimental measurements shown as points.	. 110
Fig. 4.8. Computed Na ₂ O-B ₂ O ₃ -SiO ₂ system liquidus projections with liquidus and phase composition experimental measurements shown as points.	. 111
Fig. 4.9. Computed Na ₂ B ₄ O ₇ -SiO ₂ pseudo-binary phase diagram with experimental measurements shown as points.	. 112
Fig. 4.10. Computed Na ₂ B ₈ O ₁₃ -SiO ₂ pseudo-binary phase diagram with experimental measurements shown as points.	. 112
Fig. 4.11. Partial Gibbs energy of liquid Na ₂ O at 1200 K and specified Na ₂ O constant mole fractions in the Na ₂ O-B ₂ O ₃ -SiO ₂ system referred to Na ₂ O + 2B ₂ O ₃ with experimental measurements shown as points	. 113
Fig. 4.12. Partial Gibbs energy of liquid Na ₂ O at 1223 K and 5 and 10% Na ₂ O constant mole fractions in the Na ₂ O-B ₂ O ₃ -SiO ₂ system referred to pure Na ₂ O with experimental measurements shown as points.	. 113
4.13. Computed Na ₂ O-B ₂ O ₃ -Al ₂ O ₃ system liquidus projections with liquidus experimental measurements shown as points.	. 114
4.14. Computed NaBO ₂ -Al ₂ O ₃ pseudo-binary phase diagram with experimental measurements shown as points	. 115
4.15. Computed Al ₂ O ₃ -B ₂ O ₃ -SiO ₂ system liquidus projections with liquidus experimental measurements shown as points.	. 116
Fig. 5.1. Computed K2O-Na2O phase diagram.	. 150
Fig. 5.2. Computed K ₂ O-Al ₂ O ₃ phase diagram.	. 150
Fig. 5.3. Computed K ₂ O-SiO ₂ phase diagram.	. 151
Fig. 5.4. Computed activity of $K_2O(\ell)$ in the K_2O -SiO ₂ melt	. 151
Fig. 5.5. Computed K ₂ O-B ₂ O ₃ phase diagram	. 152
Fig. 5.6. Computed Li2O-Na2O phase diagram.	. 152
Fig. 5.7. Computed Li ₂ O-Al ₂ O ₃ phase diagram	. 153

Fig. 5.29. Computed FeO-SiO ₂ phase diagram at O ₂ (g) partial pressure of 0.21 atm.	164
Fig. 5.30. Computed FeO-SiO ₂ phase diagram saturated with Fe(bcc).	165
Fig. 5.31. Computed activity of FeO(ℓ) in the FeO-SiO ₂ melt	165
Fig. 5.32. Computed FeO-B ₂ O ₃ phase diagram saturated with Fe(bcc)	166
Fig. 5.33. Computed activity of FeO(s) at 1473 K and 1573 K and FeO(ℓ) at 1673 K in the FeO-B ₂ O ₃ melt	166
Fig. 5.34. Computed MgO-Na ₂ O phase diagram	167
Fig. 5.35. Computed MgO-Al ₂ O ₃ phase diagram.	167
Fig. 5.36. Computed MgO-SiO ₂ phase diagram.	168
Fig. 5.37. Computed MgO-B ₂ O ₃ phase diagram.	168
Fig. 5.38. Computed activity of MgO(s) in the MgO-B ₂ O ₃ melt.	169
Fig. 5.39. NaAlSiO ₄ -NaFeSiO ₄ phase diagram.	169
Fig. 5.40. NaAlSiO ₄ -NaFeSi ₂ O ₆ phase diagram.	170
Fig. 6.1. Equilibrium mass fraction calculation for NP-K-1 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment.	182
Fig. 6.2. Equilibrium mass fraction calculation for NP-K-2 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment.	182
Fig. 6.3. Equilibrium mass fraction calculation for NP-Ca-1 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment. Phase labels $A = Na_2SiO_3$ and $B = Na_2B_4O_7$.	183
Fig. 6.4. Equilibrium mass fraction calculation for NP-Ca-2 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment. Phase labels $A = Ca_5SiO_{10}B_2$, $B = Ca_3B_2O_6$, $C = Mg$ -Spinel, $D = Na_2SiO_3$, and $E = Na_2Ca_3Al_{16}O_{28}$.	183
Fig. 6.5. Equilibrium mass fraction calculation for NP-Fe-3 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment.	184

Fig. 6.6. Equilibrium mass fraction calculation for NP-Li-2 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment.	184
Fig. 6.7. Equilibrium mass fraction calculation for CVS2-35 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment.	185
Fig. 6.8. Equilibrium mass fraction calculation for CVS2-63 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment. Phase labels $A = Ca_5SiB_2O_{10}, B = Ca_3Si_2O_7, C = CaSiO_3(\alpha), and D = Ca_2B_2O_5(\alpha)$	185
Fig. 6.9. Equilibrium mass fraction calculation for NP2-16 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment. Phase label A = NaAlSi ₃ O ₈ (high-albite), NaFeSi ₂ O ₆ , and C = Malinkoite.	186
Fig. 6.10. Equilibrium mass fraction calculation for NE3-04 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment.	186
Fig. 6.11. Equilibrium mass fraction calculation for NP-BL glass. Phase labels A = Malinkoite, B = $Na_2Si_2O_5(\alpha)$, C = Na_2SiO_3 , and D = $Na_2B_4O_7$	187
Fig. 6.12. Scheil-Gulliver cooling calculation for NP-BL glass	187
Fig. 7.1. Computed Cs ₂ O-TiO ₂ pseudo-binary phase diagram with experimental measurements shown as points.	221
Fig. 7.2. Computed hollandite standard enthalpies of formation from constituent elements compared with experimental and DFT derived values. Legend corresponds to Table 7.3 in which labels with '_calc' indicate values computed from the thermodynamic database.	221
Fig. 7.3. Computed heat capacity of Ba _{1.07} Cs _{0.221} Al _{2.36} Ti _{5.64} O ₁₆ hollandite at 1.2 mPa with experimental measurements for the Ba _{1.18} Cs _{0.21} Al _{2.44} Ti _{5.53} O ₁₆ hollandite shown as points	222
Fig. 7.4. Computed 1473 K isothermal diagram of pseudo-ternary BaO- Cs ₂ O-TiO ₂ system with oxides of Cr, Al, and Fe additives in CAF-SPH-1 quantities. Numbered phase regions are defined in Table 7.7	223
Fig. 7.5. Expanded section of 1473 K of pseudo-ternary BaO-Cs ₂ O-TiO ₂ isothermal diagram of Fig. 7.4	224

Chapter 1

Background

Immobilizing high-level liquid radioactive waste in a borosilicate glass matrix is being used for long-term storage of U.S. defense nuclear waste.¹ Certain types of radioactive waste that contain high concentrations of Na₂O and Al₂O₃, however can cause nepheline, NaAlSiO₄, to precipitate,¹ which would act to remove glass-former SiO₂ and glass-modifier Al₂O₃. Nepheline formation can thus cause severe deterioration of the durability of the resulting waste glass.¹

Sodium aluminoborosilicate glasses with high concentrations of Al₂O₃ and Na₂O are susceptible to nepheline crystallization if the glass compositions are within or near the nepheline primary phase field of the pseudo-ternary Na₂O-Al₂O₃-SiO₂ phase diagram.¹⁻⁸ Uncertainty related to the prediction of nepheline phase formation in waste glass necessitates a conservatively dilute waste loading, which results in more filled canisters than is necessary for disposition of the material. An increase in produced canisters results in an increase in operational costs as well as the requirement for more costly temporary and permanent waste storage capacity.

An accurate phase field model that couples waste glass chemistry with the kinetics and morphology evolution of nepheline phase formation would reduce the uncertainty in the prediction of waste glass compositions in which nepheline would form. This in turn

would enable confidence in higher canister waste loadings and thereby reduce the quantity of canisters needed. Development of a phase field model, however, requires an accurate thermodynamic description of the equilibrium behavior of nepheline and associated phases within the multicomponent glass system, which will require a self-consistent thermodynamic database to yield the necessary set of thermochemical values.⁹⁻¹³

Towards this goal, the database must include the nepheline-forming oxides Na2O, Al₂O₃, and SiO₂. Also, according to studies,^{1, 4, 5, 8, 14-25} Li₂O, K₂O, Fe₂O₃, B₂O₃, CaO, and MgO are HLW glass oxides that can influence the precipitation of nepheline. Thus, these oxides should also be included to ultimately obtain a database composed of the oxides Na₂O, Al₂O₃, SiO₂, B₂O₃, K₂O, Li₂O, CaO, MgO, Fe₂O₃, and FeO. Further discussion of the basis for the selection of these particular constituents to form the multicomponent glass database is included in Section 2.3. To develop this database, thermodynamic assessments of pseudo-binary and -ternary subsystems composed of the constituent oxides will be conducted according to the CALPHAD methodology.²⁶

In addition to the development of a HLW glass database to describe nepheline equilibrium behavior, the CALPHAD assessment approach²⁶ was also applied to characterize the stability of the hollandite phase in HLW. Ceramic waste forms such as hollandite have been shown to accommodate nearly all the constituents in nuclear waste including radioactive and non-radioactive components and are known to be resistant to hydrothermal leaching ubiquitous with geologic sequestration. Ceramic waste forms offer better durability and higher waste loadings for some species for which existing HLW glass formulations are inappropriate or inefficient.²⁷⁻³⁰ Specifically, titanate ceramics, e.g., SYNROC,³¹ have been extensively studied for use in immobilizing nuclear wastes due to

2

their inherent leach resistance.³²⁻³⁴ Titanate hollandite ceramics can be generally expressed as $A_x(Ti^{+4},M)_{8}O_{16}$ where A represents alkali and alkaline earth metal cations such as Cs^{+1} , Ba^{+2} , Rb^{+1} , K^{+1} , and Sr^{+2} and M represents +2/+3 cations such as Al^{+3} , Fe^{+3} , Fe^{+2} , Ga^{+3} , Cr^{+3} , Zn^{+2} , and Mg^{+2} .^{30, 35} Studies have been conducted to analyze the effect of M-site substitution on the crystallographic structure of hollandite and Cs incorporation.^{28, 30, 36-40} To reduce the magnitude of the possible experiential work and target specific hollandite formulations, a thermodynamic database consisting of the oxides BaO, Cs₂O, TiO₂, Cr₂O₃, Al_2O_3 , Fe₂O₃, FeO, and Ga₂O₃ has been developed to provide phase relations to guide development of compositions that are likely to form the hollandite phase as well as avoid secondary Cs parasitic phases.

The thermodynamic models that will characterize liquid and solid solution phases are the compound energy formalism⁴¹ (CEF) and two-sublattice partially ionic liquid model⁴² (TSPIL), respectively. The specific desire to use the TSPIL model stemmed from the ability of the model to provide a continuous description of a liquid that changes in character with varying composition²⁶ as well as the ease of scalability of the model to higher-order systems. The capability of both databases to accurately predict the equilibrium behavior of nepheline and hollandite in a HLW system will be validated by comparing calculation results to experimental data.

1.1. FactSage

FactSage is a thermochemical software and database package originally formed in 2001 from the fusion of the FACT-Win and ChemSage computational thermochemistry software suites.⁴³ A brief history of these latter two software packages is provided by Bale et al.⁴³ While FactSage is primarily used to calculate and plot binary, ternary, and

multicomponent phase equilibria for various applications in research laboratories and industry,⁴³ the thermochemical optimization capability and supporting software components are of primary importance in this work. As the general purpose of optimization within the CALPHAD method as well as the mathematics of the optimization technique employed by FactSage are discussed in Section 2.4, this section will rather focus on the software mechanisms involved in conducting an optimization within FactSage.

The functions of FactSage are made available as separate modules within a graphical user interface (GUI) that runs on a Microsoft Windows operating system with the modules labeled as 'Compound,' 'Solution,' 'Equilib,' and 'OptiSage' used in the process of conducting an optimization. The tutorial accompanying the OptiSage module explains the way these four modules interface in sufficient detail that a user can conduct an example assessment. Thus, what follows will be a brief summary of the purpose and use of each module in the context of optimizing a system.

The Compound module consists of a library of databases containing Gibbs energy expressions of chemical compound solid, liquid, and/or gaseous phases in polynomial form as a function of temperature. Values for heat capacities, enthalpies, and entropies of the compounds are also listed in accordance with eq. (2.13). Each database is intended for a particular application, e.g., FTdemoBASE is to be used when following FactSage tutorials while FToxidBASE, FTsaltBASE, and FTfrtzBASE can be used when analyzing oxide systems, salt systems, and nitrate based fertilizers, respectively. Additionally, users can create a new compound database(s) as part of the development of an assessed thermodynamic database. Solution endmember Gibbs energies (Sections 2.5.2 & 2.5.3) as

well as stoichiometric compounds known to form in a binary or ternary system of interest are obtained or derived from compounds in the Compound module.

The Solution module enables the construction of models to characterize the nonstoichiometric behavior of solid or liquid solution phases. As discussed in Sections 2.5.2 & 2.5.3, the CEF and TSPIL models employ a sublattice approach to account for solution phase defects and, thus, sublattice-based models are available for selection. The Gibbs energy functions of the solution endmembers are based on compounds obtained from the Compound module with possible inclusions of stoichiometric multipliers and/or optimized values. Interaction parameters of any order and various form including the Redlich-Kister power series (Sections 2.5.2 & 2.5.3) can also be added to the models with zero typically assigned as the starting value of the parameters. The assessor needs to anticipate the interaction parameters that may be needed to optimize a solution phase as part of the development of the initial solution model as additional interaction parameters cannot be added in the OptiSage module GUI.

Within the context of conducting an assessment, the Equilib module is used to generate a ChemSage file that is imported into OptiSage.

The OptiSage module allows the user to optimize solution phases and stoichiometric compounds to experimental data by adjusting the values of parameters that can include solution endmember or line compound standard enthalpies, standard entropies, or heat capacities as well as interaction parameter such as the A and B coefficients of a Redlich-Kister expanded polynomial (eq. (2.18)). The selection of the parameters to optimize is significantly dependent on the judgment of the assessor who must take into account knowledge of the system thermochemical behavior as well as make use of

assessment experience to anticipate the effect the inclusion of a new parameter into the optimization will have on the ability of the solid solution and/or liquid model(s) to reproduce all experimental data incorporated into the assessment. As described in Section 2.4.2, FactSage implements a sequential Bayesian parameter estimation technique to optimize the selected parameters to experimental data. The iterative process will stop when the errors of the parameters are less than a convergence limit or the maximum number of iterations is reached. The number, type, and order of experimental data sets to incorporate into an optimization is chosen at the discretion of the assessor but it is a good practice to optimize to thermochemical as well as phase equilibria data when available. It was concluded through the conduction of the assessments in this work that activity data was preferred to initiate an assessment if starting with zero values for interaction parameters to obtain good first estimates. Enthalpy of mixing data was then beneficial to include with activity data to further adjust the parameter values. Other thermochemical data such as partial Gibbs energies of system components could also be added at this step of the assessment. Phase equilibria data such as liquidus, solidus, or invariant points were then introduced to refine parameter values such that the calculated values yielded by the models aligned with the concomitant experimental data to a sufficient extent, which is also decided at the discretion of the assessor. As previously alluded, the process of selecting the parameters to optimize, order in which to optimize the parameters, experimental data to include, and order in which to include that experimental data is altogether reliant on the assessor. Upon completion of the optimization routine, a best set of assessed parameters is obtained that ideally enable the model(s) to characterize the equilibrium behavior of the system of interest.

6

Chapter 2

Literature Review

This section will use information that exists in published literature to discuss the formation of the glass system database, nepheline precipitation in HLW glass, the CALPHAD method including models for thermodynamic assessments, and solutions that are known to form in the Na₂O-Al₂O₃-B₂O₃-SiO₂-Fe₂O₃-Li₂O-K₂O-CaO-MgO system.

2.1. Nepheline precipitation

As nepheline consists of one mole of Na₂O and Al₂O₃ as well as two moles of SiO₂, the precipitation of a mole of nepheline removes three moles of the glass-former SiO₂ and glass-modifier Al₂O₃ from the glass matrix.⁷ This results in reduced glass durability and hence the potential for an increased leach rate of radionuclides into the surrounding environment.⁷ Analysis of experimental glass composition studies^{8, 24, 44} conducted by Li et al.¹ determined that glasses with a ratio of SiO₂/(SiO₂ + Na₂O + Al₂O₃) > 0.62 (Fig. 2.1), where the chemical formulas represent mass fractions in glass, do not precipitate nepheline. This empirical mass ratio limit is known as the nepheline discriminator and is used as a process control constraint at the Defense Waste Processing Facility⁴⁵ as well as for Hanford site models.⁴⁶. The nepheline discriminator has been proven to be conservative as indicated by a result of a study conducted by Vienna et al.,⁴⁷ which compiled and plotted nepheline

crystallization data for 747 HLW glass compositions (Fig. 2.2). This plot indicates that HLW glass compositions exist with SiO₂ mass concentrations greater than 0.62 that do not precipitate nepheline.

Reducing the SiO₂ mass concentration limit would enable high Al₂O₃ concentration glasses to be produced, which would allow for higher waste loadings to be targeted.²³ Effort has been directed towards refining the nepheline discriminator to reduce known conservatism.^{18-20, 23, 47} However, as the basis of the discriminator is fundamentally empirical, it is desirable to consider a method of describing nepheline precipitation that is based on a physical understanding of the glass system. Thus, nepheline crystallization can likely be characterized by a thermochemical equilibrium model due to the rapid kinetics of nepheline crystallization in melts.^{8, 48} As such, this may represent an alternative method to the discriminator approach to identify glass compositions that will precipitate nepheline. An accurate thermochemical representation of waste glass compositions is necessary to allow a more precise understanding of the composition-temperature space for nepheline formation, which can facilitate the development of a physical model utilizing kinetics and growth descriptions in a phase field approach to predict nepheline precipitation in glass. This would be the most reliable type of model and could be confidently extended to regions where measurements are lacking. The development of such a model requires accurate thermochemical descriptions of the constituent phases, which is the objective of the current effort.

2.2. Nepheline experimental observations

Li et al.¹ applied Raman spectroscopy as well as optical, scanning electron, and transmission electron microscopy to sodium aluminoborosilicate glasses that precipitated

8

nepheline as the primary phase. The Raman spectroscopic results indicated that nanocrystals formed in certain glass composition melts and were thus present in the quenched glass samples. Transmission optical micrographs (Fig. 2.3) indicated that glass samples with high alumina concentrations resulted in significant nepheline crystallization that showed a regular pattern of a light nepheline phase in the matrix. In addition, nepheline was present in a canister centerline cooled and thus slowly cooled medium-alumina concentrated glass sample (Fig. 2.4) as well as isothermally treated samples in the form of large crystals (Fig. 2.5). Scanning electron microscopy micrographs were obtained of an NP-BL sample was heat treated at 816°C for 72 hours in a temperature gradient furnace, and nepheline crystals of various morphologies were observed (Fig. 2.6).

McCloy et al.⁵ applied multi-nuclear magnetic resonance (NMR), Raman, and Mossbauer spectroscopies to analyze the effect of Si, Al, B, Na, and Fe as nuclear glass network melt structure precursors to nepheline crystallization. The crystallographic structure of nepheline was first considered in order to appreciate its crystallization in the complex melt. Per the study, the nepheline structure is described as a 'stuffed tridymite derivative' meaning that six-membered ring layers are stacked and the channels within these rings are filled with specific cations (Fig. 2.7). The nepheline crystal formation is formed by the stacking of the ring layers along the c-axis in an eclipsed or cis arrangement in which the layers are mirror images. Four types of tetrahedral sites exist in the nepheline structure and are indicated as T(1), T(2), T(3), and T(4) in Fig. 2.7. Aluminum and silicon tetrahedra form six-membered rings that alternate. Additional silicon atoms added to the nepheline structure have been observed (Dollase & Thomas⁴⁹) as well as substitutions with calcium, iron, and other cations (Tait et al.¹⁶). The general occupation, however, of the

9

tetrahedral sites is considered to be aluminum on the T(1) site with potential silicon antisite defects, silicon on the T(2) site with potential aluminum anti-site defects, silicon on the T(3) site with potential aluminum anti-site defects, and aluminum on the T(4) site with potential silicon anti-site defects. The T(1) and T(2) sites are generally considered to be fully ordered whereas the T(3) and T(4) sites are partially disordered in aluminum and silicon. Short-range order of the nepheline tetrahedral sites has also been observed in nuclear magnetic resonance studies.⁵⁰ Iron is often observed in natural nepheline crystals (Vulic et al.⁵¹) in a valence state of Fe⁺³ (Tait et al.¹⁶) as the smaller Fe⁺² is not as favored to occupy the channel sites.⁵² Pierce et al.³ has also shown that the +3 valence state of boron can occupy a tetrahedral site in synthetic materials but the specific site is not currently known.

The NMR study conducted by McCloy et al.⁵ indicated two sites for aluminum, silicon, and sodium in the samples that crystallized nepheline as well as a change in boron speciation that resulted in an increase of boron (IV) after nepheline crystallization. The Raman spectroscopy results (McCloy et al.⁵) indicated that a significant part of the glass matrix is composed of metaborate chains or rings, which suggests the presence of a large quantity of non-bridging oxygens as well as a separation of the borate from the aluminosilicate network. Mossbauer spectroscopy (McCloy et al.⁵) in combination with iron redox chemical measurements indicated that iron plays a minor role in the sodium aluminosilicate glasses with a predominance of the Fe⁺³ valence state present. It was also observed that iron oxide spinel always forms with the crystallization of nepheline.

2.3. Selection of oxides to construct database and systems to assess

Three high-level nuclear waste glass composition variability studies (CVSs) were conducted to ensure that the Hanford Site glass product would be acceptable.⁵³ A concise summary of CVS-I,⁵⁴ CVS-II,⁵⁴ and CVS-III,⁵⁵ was documented by Hrma et al.⁵⁶ The glass composition regions selected for the CVSs were based on results of previous scoping and solubility studies as well as projections of glass compositions that may be produced at the Hanford Site.⁵³ The acceptable glass composition region was defined by the major oxide components in the feed, glass additives, and recycle streams of SiO₂, B₂O₃, Al₂O₃, Fe₂O₃, ZrO₂, Na₂O, Li₂O, CaO, MgO, and all 'other' remaining waste components of which K₂O is included.^{8, 53} Table 2.1 lists the glass composition range covered by CVS-1⁵⁴ and CVS-2,⁵⁴ which are the ranges over which glass property models are considered to be useful and valid.⁵³

Matlack et al.⁵⁷ were tasked with determining a glass composition optimized for waste loading while retaining acceptable durability and processing characteristics. Four glass compositions limited by bismuth, chromium, aluminum, and aluminum + sodium were provided by the DOE Office of River Protection to Matlack et al.⁵⁷ for analysis. The study concluded that an aluminum-limited waste had the best combination of high waste loading as well as glass and melt properties⁵⁷ displays the oxide composition of the aluminum-limited waste denoted as HLW-E-AL-27.

The main disadvantage of high-aluminum HLW glass is the potential to precipitate nepheline, which reduces glass durability.⁷ As the waste at the Hanford Site contains high concentrations of aluminum mostly due to the reprocessing of cladding material used in Site production reactors, nepheline precipitation in glass will be a limiting factor for the

vast majority of the waste processed at the Hanford Site. Li et al.⁸ established that, of the oxides listed in Table 2.2, B₂O₃, Fe₂O₃, Li₂O, K₂O, CaO, and MgO can affect nepheline precipitation. Thus, the proposed Na₂O-Al₂O₃-SiO₂-B₂O₃-K₂O-Li₂O-CaO-MgO-Fe₂O₃-FeO database to be assessed consists of the recommended oxides for glass property models that can impact nepheline precipitation.

Per Table 2.2, the oxides at greater than 10% molar concentration are SiO₂, Al₂O₃, B₂O₃, and Na₂O, and are thus considered in this work to be major components of the database. The remaining oxides known to affect nepheline precipitation in HLW glass at less than 10% molar concentration, those being Fe₂O₃, Li₂O, K₂O, CaO, and MgO, are labeled as minor components. FeO will also be considered as Fe commonly exists as an equilibrium mixture of Fe⁺² and Fe⁺³ in glass.^{58, 59} Due to relatively high molar concentrations, the major components exist in the glass in sufficient concentrations that it is likely these components will interact with all other major as well as minor components, whereas it is more unlikely that a minor-minor oxide interaction would occur due to the dilute concentrations of these components. As such, the database will be developed by assessing all pseudo-binary and -ternary systems consisting of the major oxides as well as all pseudo-binary systems of the major-minor oxides.

2.4. CALPHAD methodology overview

Cacciamani⁶⁰ developed the flowchart displayed in Fig. 2.8 that outlines the steps involved in performing a CALPHAD assessment. Descriptions of each step will herein be provided.

Thermodynamic modeling of phases involves constructing a model of a phase that exists within a binary or higher order system. Thermodynamic solution models such as the

CEF and TSPIL are most often developed within software packages such as FactSage⁴³ or Thermo-Calc.⁶¹ These models can be used to calculate thermodynamic properties of ordered and disordered solid solutions as well as liquids.

2.4.1. Evaluation of experimental data

It is necessary to collect and critically evaluate experimental data applicable to the system being assessed as inaccurate data will result in a poor optimization. In analyzing the quality of experimental data, details to be considered include the experimental technique used, phases present within the system, purity of the sample analyzed, experimental conditions, quantities measured, and accuracy of the measurements.⁶² Per Saunders & Miodownik,⁶³ many experimental techniques can be utilized to obtain thermochemical data. Isothermal and isoperibol calorimeters can be used to measure heat contents of pure substances from which heat capacities may be derived whereas adiabatic and heat-flow calorimeters are more effective at directly measuring heat capacities and enthalpies of transformation. Calorimetric techniques such as the drop method and electromagnetic levitation calorimetry can also be utilized to measure enthalpies and heat capacities of pure substances or reactions. Differential scanning calorimetry (DSC) measures the heat absorbed or released during a transformation and thus is often used to quantify thermodynamic properties during phase transformations. Differential thermal analysis (DTA) is more sensitive to temperature changes in a sample than DSC and, consequently, is more often used to determine temperatures of material phase changes. Combustion bomb calorimetry has been successfully used to measure enthalpies of formation of carbides, borides, and nitrides. Gas phase equilibria techniques used to determine thermochemical properties from activities derived from measured vapor

pressures include static methods, dew-point and non-isothermal methods, as well as Knudsen effusion and Langmuir free-evaporation methods. Electromotive force (EMF) experiments can also be conducted to measure partial Gibbs energies.

Experimental techniques also exist to determine phase equilibria and can be categorized as non-isothermal and isothermal techniques. Non-isothermal methods include thermal analysis techniques such as generating cooling curves, DSC, and DTA as well as chemical potential techniques such as EMF, magnetic susceptibility measurements, resistivity methods, and dilatometric methods. Isothermal techniques include metallography that involves the use of optical or electron microscopy, x-ray diffraction, sampling and equilibration methods, and diffusion couples.

Thermodynamic data can also be estimated when experimental data is not available or sufficient for a system. Spencer⁶⁴ details methods of thermodynamic data estimation of heat capacities, entropies, and enthalpies of formation for metallurgical applications. Also discussed are the thermophysical property data requirements for single phases as well as two phases that enable the correlation of this data to phase diagrams generated via the CALPHAD method.

Thermochemical data can also be generated from semi-empirical or ab-initio methods such as Density Functional Theory⁶⁵ (DFT). Ab-initio calculations, however, are currently limited to relatively small unit cell analyses due to the computational requirements inherent to calculation methods such as DFT. Consequently, first principle methods to calculate thermochemical data remain relatively restricted within the CALPHAD community.

2.4.2. Sequential Bayesian estimation for optimization

The next step in the CALPHAD process is the optimization of the thermodynamic models to thermochemical data. Optimizations are most often conducted within software packages that have a module specifically for optimization procedures such as OptiSage within the FactSage software suite,⁴³ which uses a sequential Bayesian parameter estimation technique as the main optimization routine.⁶⁶

The goal of sequential Bayesian estimation within the context of the CALPHAD method is to determine values for unknown coefficients of a Gibbs energy function such that the function can output calculated thermodynamic values within the desired accuracy of a corresponding experimentally determined data point. The following mathematical description is based on texts authored by Walton,⁶⁷ Konigsberger & Gamsjager,⁶⁸ Konigsberger,⁶⁹ and Konigsberger & Eriksson.⁶⁶

According to Bayesian estimation theory, an error function can be established consisting of a term accounting for the difference between values calculated by the model and corresponding experimental data as well as a term accounting for the difference between original and final model parameters:

$$E(P) = \sum_{j,k=1}^{n} (f_j(P) - y_j) C_{jjk}^{-1}(f_k(P) - y_k) + \sum_{j,k=1}^{m} (P_j - P_j^o) C_{P^ojk}^{-1}(P_k - P_k^o)$$
(2.1)

where y_j and $f_j(P)$ are the jth experimental value and corresponding model calculated value as a function o2f the model parameters $P_1,...,P_m$, respectively. The variables $P_1^0,...,P_m^0$ represent *a priori* model parameters to use as initial values for the minimization process. C_{yjk} and C_{p^0jk} are covariance matrices of experimental function values y and *a priori* parameters p^0 , respectively. The inverse of the C variables are weighting matrices, which

enable different weightings for the two parts of the error function to represent the confidence of the assessor in the accuracy of the experimental data as compared to the original model properties.

Eq. (2.1) can be rewritten in matrix form as:

$$E(P) = (f(P) - y)^{\mathrm{T}} C_{y}^{-1} (f(P) - y) + (P - P^{\mathrm{o}})^{\mathrm{T}} C_{\mathrm{P}^{\mathrm{o}}}^{-1} (P - P^{\mathrm{o}})$$
(2.2)

where f(p) and P are the model calculation vector function and model parameter vector, respectively.

Minimizing eq. (2.2) according to a Newton-Raphson method⁶⁷ algorithm yields the recursive formula:

$$P^{i+1} - P^{i} = \left((S^{T})C_{y}^{-1}S + C_{P^{0}}^{-1} \right)^{-1} \cdot \left(C_{P^{0}}^{-1} \left(P^{0} - P^{i} \right) \right) + S^{T}C_{y}^{-1} \left(y - f\left(p^{i} \right) \right)$$
(2.3)

where S is the sensitivity matrix of derivatives of the model calculations, f(P), with respect to the model parameters, P. For an element jk of the sensitivity matrix:

$$S_{jk} = \partial f_j(P) / \partial P_k \tag{2.4}$$

 P^{i+1} values are iteratively determined until the $P^{i+1} - P^i$ delta is less than a prescribed convergence limit at which point a final best set of model parameters is obtained.

2.4.3. Lagrange multiplier method for Gibbs energy minimization

As previously stated, the Lagrange multiplier method is used to minimize the Gibbs energy of thermodynamic models.

The following characterization of the Lagrange multiplier method is based on the texts of Hillert⁷⁰ as well as Lukas et al.²⁶ The total Gibbs energy of a system is defined by summing the number of moles of the phase α , n^{α} , multiplied by the integral molar Gibbs energy of each phase α , $G_{\rm m}^{\alpha}$, with the constraint that $n^{\alpha} \ge 0$:

$$G = \sum_{\alpha} n^{\alpha} \cdot G_{\rm m}^{\alpha} \tag{2.6}$$

The equilibrium condition of the system may then be expressed as:

$$\min[G(n^{\alpha}, T, p, y_{k}^{\alpha s})] = \min\left[\sum_{\alpha} n^{\alpha} \cdot G_{m}^{\alpha}(T, p, y_{k}^{\alpha s})\right]$$
(2.5)

where *T* and *p* are the temperature and pressure of the system, respectively, while $y_k^{\alpha s}$ represents the site fraction of the k species on sublattice s of the phase α .

The minimum of the total Gibbs energy as described by eq. (2.5) can be obtained through the application of the Lagrange-multiplier method with the system subjected to the following three constraints:

$$n_{\rm i} - \sum_{\alpha} n^{\alpha} \sum_{\rm s} a^{\rm s} \sum_{\rm k} b^{\rm k}_{\rm i} \cdot y^{\alpha \rm s}_{\rm k} = 0$$
(2.7)

$$\sum_{k} y_k^{\alpha s} - 1 = 0 \tag{2.8}$$

$$\sum_{s} a^{\alpha s} \sum_{k} \nu_{k} \cdot y_{k}^{\alpha s} = 0$$
(2.9)

where n_i is the total content of each element in the i system, $a^{\alpha s}$ is the number of sites on the sublattice s in one mole of phase α , b_i^k is the number of i atoms per unit of k species, and v_k is the valency of k species. Eqs. (2.7) - (2.9) establish that the total amount of each i component in phase α remains constant, the site fractions in each sublattice of phase α sum to unity, and the charge of each ionic species in phase α sums to zero, respectively.

Each constraint can be multiplied by a Lagrange multiplier and then added to the total Gibbs energy of the system to form a target function to be minimized:

$$\min[L(T, p, n_{i}, y_{k}^{\alpha s}, n^{\alpha}, \beta, \gamma, \delta)]$$

$$= \sum_{\alpha} n^{\alpha} \cdot G_{m}^{\alpha}(T, p, y_{k}^{\alpha s}) + \beta \left[n_{i} - \sum_{\alpha} n^{\alpha} \sum_{s} a^{s} \sum_{k} b_{i}^{k} \cdot y_{k}^{\alpha s} \right]$$

$$+ \gamma \left[\sum_{k} y_{k}^{\alpha s} - 1 \right] + \delta \left[\sum_{s} a^{\alpha s} \sum_{k} \nu_{k} \cdot y_{k}^{\alpha s} \right]$$

$$(2.10)$$

where β , γ , and δ are the Lagrange multipliers.

A set of nonlinear equations is then obtained by setting the first derivatives of L with respect to each of the unknowns to zero. The partial derivatives with respect to the Lagrange multipliers β , γ , and δ will yield Eqs. (2.7) - (2.9) while the partial derivatives with respect to n^{α} and $y_{k}^{\alpha s}$ result in Eqs. (2.11) & (2.12), respectively:

$$\frac{\partial L}{\partial n^{\alpha}} = G_{\rm m}^{\alpha} - \beta \sum_{\rm s} a^{\alpha \rm s} \sum_{\rm k} b_{\rm i}^{\rm k} \cdot y_{\rm k}^{\alpha \rm s} = 0$$
(2.11)

$$\frac{\partial L}{\partial y_{k}^{\alpha s}} = n^{\alpha} \frac{\partial G_{m}^{\alpha}}{\partial y_{k}^{\alpha s}} - \beta \sum_{\alpha} n^{\alpha} \sum_{s} a^{\alpha s} \sum_{k} b_{i}^{k} + \gamma + \delta \sum_{s} a^{\alpha s} \sum_{k} \nu_{k} = 0$$
(2.12)

As the set of equations defined by Eqs. (2.7) - (2.9), (2.11), & (2.12) yield equilibrium conditions for the unknowns $y_k^{\alpha s}$, n^{α} , β , γ , and δ , the variables *T*, *p*, and *n*_i must be given initial values and held constant during the minimization routine. Values for these unknown variables for the system at equilibrium can be determined through the use of a root-finding algorithm such as the Newton-Raphson method.

2.4.4. Model validation and database formation

Once the thermodynamic models are optimized, phase diagrams can be generated and compared with phase equilibria experimental and/or derived data. As indicated in Fig. 2.9, intensive and extensive thermochemical data can be deduced from the Gibbs energies of the optimized models and thus can also be compared to corresponding input data. The accuracy of the model to predict empirical data, assuming the data is of a quality

nature, indicates the reliability of the model to predict phase equilibria or thermochemical data for which no experimental measurements exist.

Thermodynamic models that have been successfully optimized can then be added to databases from which other users can conduct thermochemical equilibrium analyses of systems that include the components of the optimized system. The caveat to this ability being that the subsystems of higher order system databases must be self-consistent. Consequently, higher-order systems are developed by first modeling and optimizing pseudo-binary and then -ternary systems that are then combined to form a complex database of quaternary or greater components.

2.5. Thermodynamic modeling

Sections 2.5.1 - 2.5.3 will review the thermodynamic approach to modeling stoichiometric compounds as well as solid and liquid solutions.

2.5.1. Stoichiometric compounds

The Gibbs energy of a stoichiometric compound is defined as:

$$G_{\text{compound}} = \Delta H_{298.15\text{K}}^{0} + \int_{298.15\text{K}}^{\text{T}} C_{\text{p}} dT - T \left(S_{298.15\text{K}}^{0} + \int_{298.15\text{K}}^{\text{T}} \frac{C_{\text{p}}}{T} dT \right)$$
(2.13)

where $\Delta H_{298.15K}^{o}$ is the change in the compound enthalpy at a standard state of 298.15 K and 1 bar, *T* is the temperature of the compound in K, C_{p} is the heat capacity, and $S_{298.15K}^{o}$ is the compound entropy at the defined standard state conditions.

Supported by the theory presented by Berman & Brown,⁷¹ the heat capacity in eq. (2.13) can be expressed as the polynomial:

$$C_{\rm p} = a + b \cdot 10^{-3}T + c \cdot 10^{5}T^{-2} + d \cdot 10^{-9}T^{2} + eT^{-0.5} + f \cdot 10^{8}T^{-3} + gT^{-1}$$
(2.14)
+ $h \cdot 10^{-8}T^{3}$

2.5.2. Compound energy formalism

The CEF⁴¹ will be used to characterize the equilibrium behavior of solid solutions that form in HLW glass. Phase nonstoichiometry is modeled through a sublattice formalism, e.g., $(A,B)_2(C,D)_1$, in which each sublattice represents a crystallographic lattice site and point defects such as interstitials, vacancies, and/or anti-site substitutions are accounted for by the inclusion of species in each sublattice. For the example sublattice, *A*, *B*, *C*, and *D* are sublattice species representing chemical elements, compounds, or vacancies that can substitute within each sublattice on a given lattice site. Combinations of species across sublattices, e.g., A₂C₁, A₂D₁, B₂C₁, and B₂D₁, are known as model endmembers that are assigned Gibbs energies that can be equivalent to stoichiometric compounds or derived from an optimization. Mixing of these endmembers according to the CEF theory (eq. (2.15)) yields the stable stoichiometric range of the solid solution within the binary or higher order system of interest.

The molar Gibbs energy of a phase modeled using the CEF can be expressed as: $G_{\rm m} = \Sigma \Delta_{\rm f} \,^{\rm o} \, G_{\rm end} \Pi y_{\rm J}^{\rm s} + RT \Sigma \Sigma n^{\rm s} y_{\rm J}^{\rm s} \ln y_{\rm J}^{\rm s} + {}^{\rm E} \, G_{\rm m} + {}^{\rm mag} G \qquad (2.15)$

where $\Delta_{f} \circ G_{end}$ is the molar Gibbs energy of formation of an endmember, y_{J}^{s} is the site fraction of the Jth constituent in the nth sublattice, and n^{s} is the stoichiometric coefficient of the nth sublattice. The first, second, third, and fourth terms of eq. (2.15) are the Gibbs energy surface of reference, ideal entropy of mixing, excess Gibbs energy of mixing, and the magnetic contribution to the Gibbs energy, respectively.

The Gibbs energy surface of reference effectively mixes the endmembers resulting from the sublattice structure using the Gibbs energy of each endmember such that a surface of reference can be plotted above a composition plane. If no excess term was present and

the temperature of a system low enough that the ideal entropic mixing term was negligible, then this surface of reference could be used to predict the equilibrium behavior of the material.

The ideal entropy of mixing accounts for mixing of species on the same sublattice without energetic interaction between the species, i.e., all energy of the mixing species is kinetic energy due to motion.

The excess Gibbs energy, which accounts for the departure from ideal mixing of species on the same sublattice due to attraction or repulsion of the mixing constituents,⁷² can be described with a generalized regular solution expression:

$${}^{E}G_{m} = \Pi y_{J}^{s} \Sigma y_{B}^{t} L_{A,B:D:G} \dots + \Pi y_{J}^{s} \Sigma \Sigma y_{B}^{t} y_{D}^{u} L_{A,B:D,E:G} \dots + \dots$$
(2.16)

where the subscripts A, B, D, E, and G as well as superscripts t and u refer to the constituents in a sublattice and the sublattice designations, respectively, in a generalized CEF formulation for a three sublattice phase $(A, B)_{k}^{t}(D, E, F)_{l}^{u}(G)_{m}^{v}$. The subscripts *k*, *l*, and *m* in the generalized formula represent the sublattice stoichiometric coefficients. The commas separating constituents in the interaction parameter designations of eq. (2.16) indicate the interactions between constituents on the same sublattice whereas the colons separate sublattices. eq. (2.16) can be expanded to describe binary, ternary, and higher-order interactions between sublattice constituents as needed.

The interaction parameters of eq. (2.16) can be expressed as Redlich-Kister power series in terms of site fractions. As an example, for a binary interaction between the A and B species of eq. (2.17):

$$L_{A,B:D:G} = \sum_{k=0}^{n} {}^{k} L_{A,B:D:G} (y_{A}^{t} - y_{B}^{t})^{k}$$
(2.17)

www.manaraa.com

The *L* term on the right-hand side of eq. (2.17) can be expanded as a polynomial of the form:

$${}^{k}L_{A,B:D:G} = A + B \cdot T + C \cdot T \cdot \ln(T) + D \cdot T^{2} + E \cdot T^{3} + F \cdot T^{-1}$$
(2.18)

where the variables A, B, C, D, E, and F are coefficients that can be empirically determined through the optimization technique discussed in Section 2.4.2. In practice, only the A and B coefficients of eq. (2.18) are included in an assessment unless experimental data can justify the assignment of an empirically-derived value to an additional coefficient. For instance, the C coefficient that can be incorporated into an optimization if experimental heat capacity data exists for the system being assessed.²⁶

The magnetic Gibbs energy term of eq. (2.15) is defined by:

$$^{\text{mag}}G = RT \cdot f(\tau) \cdot \ln(\beta(x) + 1) \tag{2.19}$$

where $\beta(x)$ is the average magnetic moment per mole of atoms in Bohr magnetons as a function of sublattice site fractions, τ is the ratio $T / T_{\rm C}(x)$ where $T_{\rm C}(x)$ is the magnetic ordering critical temperature, also known as the Curie or Néel temperature for ferromagnetic or antiferromagnetic materials, respectively, as a function of sublattice site fractions, and $f(\tau)$ represents a power series as a function τ that expands Inden's description of the magnetic heat capacity.⁷³

To introduce the composition dependence of ^{mag}G , the terms $\beta(x)$ and $T_C(x)$ of eq. (2.19) are expressed as Redlich-Kister power series similar to the excess Gibbs energy term of eq. (2.15). For instance, when considering a binary interaction of species A and B on a sublattice, these magnetic terms can be expanded as:

$$T_{\rm C}(x) = x_{\rm A} T_{\rm C}(A) + x_{\rm B} T_{\rm C}(B) + x_{\rm A} x_{\rm B} \sum_{k=0}^{n} {}^{\rm k} T_{\rm C} (x_{\rm A} - x_{\rm B})^{\rm k}$$
(2.20)

$$\beta(x) = x_{\rm A}\beta(A) + x_{\rm B}\beta(B) + x_{\rm A}x_{\rm B}\sum_{k=0}^{n}{}^{\rm k}\beta(x_{\rm A} - x_{\rm B})^{\rm k}$$
(2.21)

where ${}^{k}T_{C}$ and ${}^{k}\beta$ are empirical parameters evaluated by optimizing to experimental data.

2.5.3. Two-sublattice partially ionic liquid model

Hillert et al.⁴² discuss the development of a TSPIL model for liquid solutions with different tendencies for ionization. The TSPIL model is based on the concept that the strength of ionization of ionic substances results in each atom being surrounded by unlike atoms in a form of chemical ordering. This ordering can be treated as two sublattices, one containing only cations and the other anions. Charged vacancies may be introduced on either cationic or anionic sublattices with the valency of the vacancy on either sublattice corresponding to the average for the ions on the other sublattice. Negatively charged vacancies on the anionic sublattice can be considered vacant sites with an excess of electrons. Positively charged vacancies on the cationic sublattice, however, would require the development of an additional rule to account for the valencies of the two kinds of vacancies. Rather than implementing this approach, however, it is possible instead to introduce a neutral species on the anionic sublattice to account for deviations from stoichiometry towards the nonmetallic side of the system. Thus, the cation sublattice will contain only positively charged ions whereas the anion sublattice can contain negatively charged ions and vacancies as well as neutral species. As described by Lukas et al.,²⁶ the general TSPIL sublattice formula can be written as:

 $(C_i^{+\nu_i})_P(A_j^{-\nu_j}, Va, B_k^0)_Q$

where C, A, Va, and B denote cations, anions, hypothetical vacancies, and neutral species, respectively, while the indices i, j, and k represent specific sublattice constituents. The

superscripts $+v_i$ and $-v_j$ represent the charge of the ith or jth cation or anion, respectively, while 0 indicates a neutral species. Electroneutrality is maintained by allowing the stoichiometry (P and Q) to vary as a function of site fractions:

$$P = \Sigma v_j y_{A_j} + Q y_{Va} \tag{2.22}$$

$$Q = \Sigma v_i y_{C_i} \tag{2.23}$$

The Gibbs energy of an ionic liquid can then be expressed as:

$$G_{\rm m} = \Sigma \Sigma y_{C_{\rm i}} y_{A_{\rm j}} \circ G_{C_{\rm i}:A_{\rm j}} + Q \left(y_{\rm Va} \Sigma y_{C_{\rm i}} \circ G_{C_{\rm i}} + \Sigma y_{B_{\rm k}} \circ G_{B_{\rm k}} \right)$$

$$+ RT \left[P \Sigma y_{C_{\rm i}} \ln y_{C_{\rm i}} + Q \left(\Sigma y_{A_{\rm j}} \ln y_{A_{\rm j}} + y_{Va} \ln y_{Va} + \Sigma y_{B_{\rm k}} \ln y_{B_{\rm k}} \right) \right] + {}^{\rm E} G_{\rm m}$$

$$(2.24)$$

where ${}^{o} G_{C_{i}:A_{j}}$ is the Gibbs energy of formation for $v_{i} + v_{j}$ moles of atoms of the endmember $C_{i}A_{j}$ while ${}^{o} G_{C_{i}}$, and ${}^{o} G_{B_{k}}$ are the values for C_{i} and B_{k} , respectively. The first, second, and third terms of eq. (2.24) are the Gibbs energy surface of reference for all possible types of constituents, the configurational entropy on each sublattice, and the excess Gibbs mixing energy, which can be expressed as:

$${}^{E} G_{m} = \Sigma \Sigma \Sigma y_{i_{1}} y_{i_{2}} y_{j} L_{i_{1}, i_{2}:j} + \Sigma \Sigma \Sigma y_{i} y_{j_{1}} y_{j_{2}} L_{i:j_{1}, j_{2}} + \Sigma \Sigma y_{i} y_{j_{1}} y_{Va} L_{i:j_{1}, Va} + \dots$$
(2.25)

As discussed in relation to the CEF model, the interaction parameters of eq. (2.25) can be expressed using the Redlich-Kister power series described by eq. (2.17) with the *L* terms defined by the eq. (2.18) polynomial.

2.6. Tables

Oxide component	Lower bound (wt%)	Upper bound (wt%)
SiO ₂	42	57
B_2O_3	5	20
Al ₂ O ₃	0	17
Fe ₂ O ₃	0.5	15
Na ₂ O	5	20
Li ₂ O	1	7
CaO	0	10
MgO	0	8
Other oxides (K ₂ O)	1	10

Table 2.1. Glass composition range covered by CVS-1 & CVS-2 studies $^{\rm 53}$

Table 2.2. Oxide composition of HLW-E-AL-27 glass⁵⁷

Oxide	Glass Composition HLW-E-AL-27 (wt%)	Glass Composition HLW-E-AL-27 (mol%)
SiO ₂	30.50	35.06
Al ₂ O ₃	23.97	16.24
B_2O_3	15.19	15.07
Na ₂ O	9.58	10.68
Li ₂ O	3.57	8.25
CaO	6.08	7.49
Fe ₂ O ₃	5.90	2.55
F	0.67	2.44
P_2O_5	1.05	0.51
NiO	0.40	0.37
Cr ₂ O ₃	0.52	0.24
ZrO_2	0.39	0.22
MgO	0.12	0.21
SO_3	0.20	0.17
Bi ₂ O ₃	1.14	0.17
PbO	0.41	0.13
K ₂ O	0.14	0.10
ZnO	0.08	0.07
BaO	0.05	0.02
CdO	0.02	0.01
TiO ₂	0.01	0.01

2.7. Figures

Fig. 2.1. Na₂O-Al₂O₃-SiO₂ liquidus projections⁷⁴ with nepheline discriminator

Fig. 2.2. Nepheline volume percent in CCC glass samples versus normalized SiO₂ concentration for 747 HLW glass compositions⁴⁷

Fig. 2.3. Transmission optical micrographs of slowly cooled glass samples showing nepheline phase in matrix¹

Fig. 2.4. Nepheline present in slowly cooled mediumalumina glass sample¹

Fig. 2.5. Transmission optical micrographs of isothermally heat treated glass simples with nepheline crystals¹

Fig. 2.6. SEM micrographs of nepheline crystals with various morphologies¹

Fig. 2.7. Crystal structure of nepheline⁵

Fig. 2.8. CALPHD assessment flowchart⁶⁰

Fig. 2.9. Block diagram of Gibbs'ian thermochemical method⁷⁵

Chapter 3

Thermodynamic Assessment of the Pseudoternary Na₂O-Al₂O₃-SiO₂

System¹

¹ Utlak S. A., Besmann T. M., Thermodynamic Assessment of the Pseudoternary Na₂O-Al₂O₃-SiO₂ System. *J. Am. Ceram. Soc.* 2018;101:928-948. Reprinted here with permission of publisher.

3.1. Abstract

Vitrified high-level radioactive waste that contains high concentrations of Na₂O and Al₂O₃, such as the waste stored at the Hanford site, can cause nepheline to precipitate in the glass upon cooling in the canisters. Nepheline formation removes oxides such as Al₂O₃ and SiO₂ from the host glass, which can reduce its chemical durability. Uncertainty in the extent of precipitated nepheline necessitates operating at an enhanced waste loading margin, which increases operational costs by extending the vitrification mission as well as increasing waste storage requirements. A thermodynamic evaluation of the Na₂O-Al₂O₃-SiO₂ system that forms nepheline was conducted by utilizing the compound energy formalism and ionic liquid model to represent the solid solution and liquid phases, respectively. These were optimized with experimental data and used to extrapolate phase boundaries into regions of temperature and composition where measurements are unavailable. The intent is to import the determined Gibbs energies into a phase field model to more accurately predict nepheline phase formation and morphology evolution in waste glasses to allow for the design of formulations with maximum loading.

3.2. Introduction

Immobilizing high-level liquid radioactive waste in a borosilicate glass matrix is being used for long-term storage of U.S. defense nuclear waste.¹ Certain types of radioactive waste that contain high concentrations of Na₂O and Al₂O₃, however can cause nepheline, NaAlSiO₄, to precipitate,¹ which would act to remove glass-former SiO₂ and glass-modifier Al₂O₃. Nepheline formation can thus cause severe deterioration of the durability of the resulting waste glass.¹

Sodium aluminoborosilicate glasses with high concentrations of Al₂O₃ and Na₂O are susceptible to nepheline crystallization if the glass compositions are within or near the nepheline primary phase field of the pseudoternary Na₂O-Al₂O₃-SiO₂ phase diagram.¹⁻⁸ Uncertainty related to the prediction of nepheline phase formation in waste glass necessitates a conservatively dilute waste loading, which results in more filled canisters than is necessary for disposition of the material. An increase in produced canisters results in an increase in operational costs as well as the requirement for more costly temporary and permanent waste storage capacity.

An accurate phase field model that couples waste glass chemistry with nepheline phase formation would reduce the uncertainty in the prediction of waste glass compositions in which nepheline would form. This in turn would enable confidence in higher canister waste loadings and thereby reduce the quantity of canisters needed. Development of phase field models, however, require an accurate thermodynamic model of nepheline and associated phases within the multi-component glass system. That will require a consistent thermodynamic assessment yielding a set of thermochemical values and models in the nepheline-forming system as it relates to the complex multicomponent nature of waste glass systems.⁹⁻¹³ The goal of this work was to develop and optimize a thermodynamic database for the Na₂O-Al₂O₃-SiO₂ system using the compound energy formalism⁴¹ (CEF) and two-sublattice partially ionic liquid⁴² (TSPIL) models to represent solid solution and liquid phases, respectively.

Previous assessments of the Na₂O-Al₂O₃,⁷⁶⁻⁸⁰ Na₂O-SiO₂,^{77, 81-87} and Al₂O₃-SiO₂^{79,} ^{80, 83, 88-95} pseudobinary systems as well as the pseudoternary Na₂O-Al₂O₃-SiO₂^{76-78, 83} system are reported. However, a critically assessed and self-consistent database for these

32

pseudobinary and -ternary systems using the CEF and TSPIL solution models does not currently exist. Thus, in order to integrate developed models with other systems optimized using these approaches, such assessments were performed in the current effort. The specific desire to use the TSPIL model is the ability of the model to provide a continuous description of a liquid that changes in character with varying composition²⁶ as well as the ease of scalability of the model to higher-order systems. This is useful for the current effort, which is to ultimately develop a ten component assessed thermodynamic database representative of glass prepared from high-level radioactive liquid waste at the Hanford site. Documented in this report is the successful development of a self-consistent thermodynamic database for the Na₂O-Al₂O₃-SiO₂ system using the CEF and TSPIL models.

3.3. Nepheline Precipitation

As nepheline consists of 1 mole of Na₂O and Al₂O₃ as well as 2 moles of SiO₂, the precipitation of a mole of nepheline removes 3 moles of the glass-former SiO₂ and glassmodifier Al₂O₃ from the glass matrix.⁷ This results in reduced glass durability and hence the potential for an increased leach rate of radionuclides into the surrounding environment.⁷ Analysis of experimental glass composition studies^{8, 24, 44} conducted by Li et al.¹ determined that glasses with a ratio of SiO₂ /(SiO₂ + Na₂O + Al₂O₃) >0.62, where the chemical formulas represent mass fractions in glass, do not precipitate nepheline as a primary phase. This empirical mass ratio limit is known as the nepheline discriminator. Nepheline precipitation, however, can also likely be characterized by a thermochemical equilibrium model due to the rapid kinetics of nepheline crystallization in melts.^{8, 48} As such, this may represent an alternative method to the discriminator approach to identify glass compositions that will precipitate nepheline. An accurate thermochemical

representation of waste glass compositions is necessary to allow a more precise understanding of the composition-temperature space for nepheline formation, which can facilitate the development of a physical model utilizing kinetics and growth descriptions in a phase field approach to predict nepheline precipitation in glass. This would be the most reliable type of model and could be confidently extended to regions where measurements are lacking. The development of such a model requires accurate thermochemical descriptions of the constituent phases, which is the objective of the current effort.

3.4. Thermodynamic Modeling

The pseudoternary Na₂O-Al₂O₃-SiO₂ system was assessed with the CALPHAD technique²⁶ using the OptiSage module of FactSage.⁴³ Five solid solutions as well as the liquid phase that form in the Na₂O-Al₂O₃-SiO₂ system have been thermodynamically modeled. The solid solutions considered in this work are mullite, β -Al₂O₃, the high-temperature allotrope of sodium aluminate, nepheline, and carnegieite. All model end-member Gibbs energies other than the liquid end-members for Na₄SiO₄ and NaAlO₂ were obtained from previous referenced assessments, whereas the Redlich-Kister interaction parameters of each model other than those for mullite were determined in this work.

3.4.1. Stoichiometric Compounds

Twenty-three stoichiometric compounds were incorporated into the pseudoternary Na₂O-Al₂O₃-SiO₂ thermodynamic database (Table 3.1). The allotropic phases of Na₄SiO₄ have been neglected in favor of a single compound description as the polymorphic transition of Na₄SiO₄ was deemed to not influence the overall pseudoternary assessment.

3.4.2. Compound Energy Formalism

The CEF representations of the oxide solid solutions were used with two or more sublattices. Generating all possible combinations of single constituents on each sublattice yields a set of stoichiometric end-members.

The molar Gibbs energy of a phase modeled using the CEF can be expressed as:

$$G_{\rm m} = \Sigma \Delta_{\rm f} \,^{\rm o} \, G_{\rm end} \Pi y_{\rm J}^{\rm s} + RT \Sigma \Sigma n^{\rm s} y_{\rm J}^{\rm s} \ln y_{\rm J}^{\rm s} + {}^{\rm E} \, G_{\rm m}$$

$$(3.1)$$

where $\Delta_{f} {}^{\circ}G_{end}$ is the molar Gibbs energy of formation of an end-member, y_{J}^{s} is the site fraction of the Jth constituent in the nth sublattice, and n^{s} is the stoichiometric coefficient of the nth sublattice. The first, second, and third terms of Equation (3.1) are the Gibbs energy surface of reference, ideal entropy of mixing, and excess Gibbs energy of mixing, respectively.

The excess Gibbs energy, which accounts for the departure from ideal mixing of species on the same sublattice due to attraction or repulsion of the mixing constituents,⁷² can be described with a generalized regular solution expression:

$${}^{E}G_{m} = \Pi y_{J}^{s} \Sigma y_{B}^{t} L_{A,B:D:G} \dots + \Pi y_{J}^{s} \Sigma \Sigma y_{B}^{t} y_{D}^{u} L_{A,B:D,E:G} \dots + \dots$$
(3.2)

where the subscripts A, B, D, E, and G as well as superscripts t and u refer to the constituents in a sublattice and the sublattice designations, respectively, in a generalized CEF formulation for a three sublattice phase $(A, B)_{k}^{t}(D, E, F)_{l}^{u}(G)_{m}^{v}$. The subscripts *k*, *l*, and *m* in the generalized formula represent the sublattice stoichiometric coefficients. The commas separating constituents in the interaction parameter designations of Equation (3.2) indicate the interactions between constituents on the same sublattice, whereas the colons separate sublattices. Equation (3.2) can be expanded to describe, in principle, constituent interactions of a multicomponent system of any order.

The interaction parameters of Equation (3.2) can be expressed as a Redlich-Kister power series in terms of site fractions. As an example, for a binary interaction between the A and B species of Equation (3.2):

$$L_{A,B:D:G} = \sum_{k=0}^{n} {}^{k} L_{A,B:D:G} (y_{A}^{t} - y_{B}^{t})^{k}$$
(3.3)

The solution model defined by Equation (3.1) becomes regular or subregular solution when the exponent k in Equation (3.3) equals 0 or 1, respectively.⁷² Thus, as indicated by the Equations (3.9) – (3.13) displayed in Sections 3.5.1 - 3.5.5, the mullite, β -Al₂O₃, nepheline, and carnegieite phases were modeled as regular solutions while the sodium aluminate phase was characterized as a subregular solution.

The L term on the right-hand side of Equation (3.3) can be expanded as a polynomial of the form:

$${}^{k}L_{A,B:D:G} = A + B \cdot T + C \cdot T \cdot \ln(T) + D \cdot T^{2} + E \cdot T^{3} + F \cdot T^{-1}$$
(3.4)

where the variables A, B, C, D, E, and F are coefficients that can be empirically determined by optimizing the model Gibbs energy function defined by Equation (3.1) to thermochemical or phase equilibria data. In practice, only the A and B coefficients of Equation (3.4) are included in an assessment unless experimental data can justify the assignment of an empirically derived value to an additional coefficient.²⁶

3.4.3. Two-Sublattice Partially Ionic Liquid Model

Hillert et al.⁴² discuss the development of a TSPIL model for liquid solutions with different tendencies for ionization. The TSPIL model is based on the concept that the strength of ionization of ionic substances results in each atom being surrounded by unlike atoms in a form of chemical ordering. This ordering can be treated as two sublattices, one

containing only cations and the other anions. Charged vacancies may be introduced on either cationic or anionic sublattices with the valency of the vacancy on either sublattice corresponding to the average for the ions on the other sublattice. Negatively charged vacancies on the anionic sublattice can be considered vacant sites with an excess of electrons. Positively charged vacancies on the cationic sublattice, however, would require the development of an additional rule to account for the valencies of the two kinds of vacancies. Rather than implementing this approach, however, it is possible instead to introduce a neutral species on the anionic sublattice to account for deviations from stoichiometry towards the nonmetallic side of the system. Thus, the cation sublattice will contain only positively charged ions whereas the anion sublattice can contain negatively charged ions and vacancies as well as neutral species. As described by Lukas et al., ²⁶ the general TSPIL sublattice formula can be written as:

$$(C_i^{+\nu_i})_P (A_j^{-\nu_j}, Va, B_k^0)_Q$$

where C, A, Va, and B denote cations, anions, hypothetical vacancies, and neutral species, respectively, while the indices i, j, and k represent specific sublattice constituents. The superscripts $+v_i$ and $-v_i$ represent the charge of the ith or jth cation or anion, respectively, while 0 indicates a neutral species. Electroneutrality is maintained by allowing the stoichiometry (P and Q) to vary as a function of site fractions:

$$P = \Sigma v_j y_{A_j} + Q y_{Va} \tag{3.6}$$

$$Q = \Sigma v_i y_{C_i} \tag{3.5}$$

The Gibbs energy of an ionic liquid can then be expressed as:

$$G_{\rm m} = \Sigma \Sigma y_{C_{\rm i}} y_{A_{\rm j}} \circ G_{C_{\rm i}:A_{\rm j}} + Q \left(y_{\rm Va} \Sigma y_{C_{\rm i}} \circ G_{C_{\rm i}} + \Sigma y_{B_{\rm k}} \circ G_{B_{\rm k}} \right)$$
(3.7)

$$+ RT \left[P \Sigma y_{C_{i}} \ln y_{C_{i}} + Q \left(\Sigma y_{A_{j}} \ln y_{A_{j}} + y_{Va} \ln y_{Va} + \Sigma y_{B_{k}} \ln y_{B_{k}} \right) \right] + {}^{E} G_{m}$$

$$37$$
www.m

www.manaraa.com

where ${}^{o}G_{C_{i}:A_{j}}$ is the Gibbs energy of formation for $v_{i} + v_{j}$ moles of atoms of the endmember $C_{i}A_{j}$ while ${}^{o}G_{C_{i}}$, and ${}^{o}G_{B_{k}}$ are the values for C_{i} and B_{k} , respectively. The first, second, and third terms of Equation (3.7) are the Gibbs energy surface of reference for all possible types of constituents, the random configurational entropy on each sublattice, and the excess Gibbs mixing energy, which can be expressed as:

$${}^{E} G_{m} = \Sigma \Sigma \Sigma y_{i_{1}} y_{i_{2}} y_{j} L_{i_{1}, i_{2}:j} + \Sigma \Sigma \Sigma y_{i} y_{j_{1}} y_{j_{2}} L_{i:j_{1}, j_{2}} + \Sigma \Sigma y_{i} y_{j_{1}} y_{Va} L_{i:j_{1}, Va} + \dots$$
(3.8)

As discussed in relation to the CEF model, the interaction parameters of Equation (3.8) can be expressed as a Redlich-Kister power series described by Equation (3.3) with the *L* terms expanded as polynomials of the form defined by Equation (3.4).

- 3.5. Solution Phase Descriptions
- 3.5.1. Mullite

Schneider et al.,⁹⁶ note that mullite is a member of the compositional series of orthorhombic aluminosilicates with the general composition $Al_2(Al_{2+2x}Si_{2-2x})O_{10-x}$. The stoichiometric end-members are sillimanite, Al_2SiO_5 , at x = 0, mullite, $3Al_2O_3 \cdot 2SiO_2$, at x = 0.25, 2/1 mullite, $2Al_2O_3 \cdot SiO_2$, at x = 0.40, and the SiO₂-free phase 1-alumina, Al_2O_3 , at x = 1.

Mullite has been modeled by Swamy et al.⁸⁸ using a three sublattice CEF model as: $(Al^{+3})_2^{\gamma}[Al^{+3}, Si^{+4}]_1^{\alpha} \{0^{-2}, Va\}_5^{\beta}$

This CEF sublattice structure accounts for the mullite octahedral and tetrahedral sites specific to the first and second sublattices denoted by the γ and α superscripts, respectively, with the possibility of vacancies accommodated on the third, anion sublattice.

The Gibbs energy relation for the mullite phase is expressed in Equation (3.9), with values listed in Table 3.2:

$$G_{\rm m}^{\rm mullite} = y_{\rm Al^{+3}}^{\alpha} y_{\rm O^{-2}}^{\beta} {}^{\rm o} G_{\rm Al_3O_5^{-1}} + y_{\rm Al^{+3}}^{\alpha} y_{\rm Va}^{\beta} {}^{\rm o} G_{\rm Al_3^{+9}} + y_{\rm Si^{+4}}^{\alpha} y_{\rm O^{-2}}^{\beta} {}^{\rm o} G_{\rm Al_2SiO_5}$$
(3.9)
+ $y_{\rm Si^{+4}}^{\alpha} y_{\rm Va}^{\beta} {}^{\rm o} G_{\rm Al_2Si^{+10}}$
+ $RT \left(y_{\rm Al^{+3}}^{\alpha} \ln y_{\rm Al^{+3}}^{\alpha} + y_{\rm Si^{+4}}^{\alpha} \ln y_{\rm Si^{+4}}^{\alpha} + 5y_{\rm O^{-2}}^{\beta} \ln y_{\rm O^{-2}}^{\beta} + 5y_{\rm Va}^{\beta} \ln y_{\rm Va}^{\beta} \right)$
+ $y_{\rm Al^{+3}}^{\alpha} y_{\rm Si^{+4}}^{\alpha} y_{\rm O^{-2}}^{\beta} {}^{\rm o} L_{\rm Al^{+3}:Al^{+3},Si^{+4}:O^{-2}} + y_{\rm Al^{+3}}^{\alpha} y_{\rm Si^{+4}}^{\alpha} y_{\rm Va}^{\beta} {}^{\rm o} L_{\rm Al^{+3}:Al^{+3},Si^{+4}:Va}$

3.5.2. β-Al₂O₃

The β -Al₂O₃ phase has been modeled by Lambotte & Chartrand⁷⁶ using a three sublattice CEF model:

 $(Na_20)_1[Al_20_3]_{11}\{Na_20, Va\}_1^{\alpha}$

Bragg⁹⁷ and Beevers & Ross⁹⁸ determined that β -Al₂O₃ with the general formula Na₂O·11Al₂O₃ has a hexagonal unit cell composed of Al₁₁O₁₆ spinel-like blocks separated by Na₂O layers in which sodium can occupy Beevers-Ross, anti Beevers-Ross, or mid oxygen sites. Rather than explicitly modeling each of these sites, hyperstoichiometry with respect to Na₂O is accommodated by Na₂O on the third sublattice.

The Gibbs energy relation for the β -Al₂O₃ phase is expressed in Equation (3.10) with values listed in Table 3.2:

$$G_{\rm m}^{\beta-{\rm Al}_2{\rm O}_3} = y_{{\rm Na}_2{\rm O}}^{\alpha} {}^{\rm o} G_{{\rm Na}_4{\rm Al}_{22}{\rm O}_{35}} + y_{{\rm Va}}^{\alpha} {}^{\rm o} G_{{\rm Na}_2{\rm Al}_{22}{\rm O}_{34}} + RT \left(y_{{\rm Na}_2{\rm O}}^{\alpha} {\rm ln} y_{{\rm Na}_2{\rm O}}^{\alpha} + y_{{\rm Va}}^{\alpha} {\rm ln} y_{{\rm Va}}^{\alpha} \right) + y_{{\rm Na}_2{\rm O}}^{\alpha} y_{{\rm Va}}^{\alpha} {}^{\rm o} L_{{\rm Na}_2{\rm O}:{\rm Al}_2{\rm O}_3:{\rm Na}_2{\rm O},{\rm Va}}$$
(3.10)

In the current assessment, it was necessary to decrease by -19.72 kJ/mol, or 0.18%, the β "-Al₂O₃ enthalpy of Lambotte & Chartrand⁷⁶ to properly reproduce the peritectoid decomposition of β "-Al₂O₃.

3.5.3. Sodium aluminate

The solubility of SiO₂ in a matrix of the high-temperature form of sodium aluminate, NaAlO₂, has been described by a two sublattice CEF model utilized by Jak et al.⁷⁷ as well as Lambotte & Chartrand⁷⁶:

$$((Na - Al)^{+4}, (Va - Si)^{+4})_1^{\alpha}[0^{-2}]_2$$

In this sublattice formula, a neutral vacancy substitutes for Na^{+1} and Si^{+4} substitutes for Al^{+3} to maintain charge neutrality. The dash notation used in the first sublattice represents a coupled substitution in that a vacancy substitutes for a Na^{+1} cation for every Si^{+4} replacing an Al^{+3} . Consequently, the entire homogeneity range from SiO_2 to stoichiometric $NaAlO_2$ is described by this sublattice structure. As noted by Lambotte & Chartrand,⁷⁶ while this sublattice formalism does not describe the physical mechanism of solubility between $NaAlO_2$ and $NaAlSiO_4$, the formalism is capable of reproducing the observed liquidus.

The Gibbs energy relation for the sodium aluminate phase is expressed in Equation (3.11) with values listed in Table 3.2:

$$G_{\text{NaAlO}_{2}}^{\text{m}} = y_{\text{NaAl}^{+4}}^{\alpha} \, {}^{o} \, G_{\text{NaAlO}_{2}} + y_{\text{VaSi}^{+4}}^{\alpha} \, {}^{o} \, G_{\text{SiO}_{2}}$$

$$+ RT \left(y_{\text{NaAl}^{+4}}^{\alpha} \ln y_{\text{NaAl}^{+4}}^{\alpha} + y_{\text{VaSi}^{+4}}^{\alpha} \ln y_{\text{VaSi}^{+4}}^{\alpha} \right)$$

$$+ y_{\text{NaAl}^{+4}}^{\alpha} y_{\text{VaSi}^{+4}}^{\alpha} \, {}^{o} \, L_{\text{NaAl}^{+4}, \text{VaSi}^{+4}; 0^{-2}}$$

$$+ y_{\text{NaAl}^{+4}}^{\alpha} y_{\text{VaSi}^{+4}}^{\alpha} \, {}^{1} \, L_{\text{NaAl}^{+4}, \text{VaSi}^{+4}; 0^{-2}} \left(y_{\text{NaAl}^{+4}} - y_{\text{VaSi}^{+4}} \right)^{1}$$

$$(3.11)$$

3.5.4. Nepheline

The nepheline solid solution has been modeled by Lambotte & Chartrand⁷⁶ using a three sublattice CEF model:

$$((Na - Al)^{+4}, (Va - Si)^{+4})_8^{\alpha}[Si^{+4}]_8\{0^{-2}\}_{32}$$

Mixing of Al and Si on any of the four tetrahedral sites does not need to be considered as the elements are not observed to exchange sites.^{16, 50, 99} The first sublattice allows accommodation of excess SiO₂, which results in Al⁺³ being replaced by Si⁺⁴ with the charge difference compensated by vacancy formation on the larger of the alkali cation sites.

The Gibbs energy relation for the nepheline phase is expressed in Equation (3.12) with values listed in Table 3.2:

$$G_{\rm m}^{\rm nepheline} = y_{\rm NaAl^{+4}}^{\alpha} {}^{\rm o} G_{\rm Na_8Al_8Si_8O_{32}} + y_{\rm VaSi^{+4}}^{\alpha} {}^{\rm o} G_{\rm Si_{16}O_{32}}$$

$$+ 8RT (y_{\rm NaAl^{+4}}^{\alpha} \ln y_{\rm NaAl^{+4}}^{\alpha} + y_{\rm VaSi^{+4}}^{\alpha} \ln y_{\rm VaSi^{+4}}^{\alpha})$$

$$+ y_{\rm NaAl^{+4}}^{\alpha} y_{\rm VaSi^{+4}}^{\alpha} {}^{\rm o} L_{\rm NaAl^{+4}, VaSi^{+4}:Si^{+4}:O^{-2}}$$
(3.12)

3.5.5. Carnegieite

The carnegieite solid solution that forms within the Na₂O-Al₂O₃-SiO₂ system has been modeled by Lambotte & Chartrand⁷⁶ using the three sublattice CEF model:

$$((Na - Al)^{+4}, (Va - Si)^{+4})_4^{\alpha}[Si^{+4}]_4\{0^{-2}\}_{16}$$

Accounting for mixing of Al and Si on the first lattice site is considered unnecessary as Stebbins et al.⁵⁰ experimentally determined that Al-Si disordering does not occur in carnegieite.

The Gibbs energy relation for the carnegieite phase is expressed by Equation (3.13) with values listed in Table 3.2:

$$G_{\rm m}^{\rm carnegieite} = y_{\rm NaAl^{+4}}^{\alpha} {}^{\rm o} G_{\rm Na_4Al_4Si_4O_{16}} + y_{\rm VaSi^{+4}}^{\alpha} {}^{\rm o} G_{\rm Si_8O_{16}}$$

$$+ 4RT (y_{\rm NaAl^{+4}}^{\alpha} \ln y_{\rm NaAl^{+4}}^{\alpha} + y_{\rm VaSi^{+4}}^{\alpha} \ln y_{\rm VaSi^{+4}}^{\alpha})$$

$$+ y_{\rm NaAl^{+4}}^{\alpha} y_{\rm VaSi^{+4}}^{\alpha} {}^{\rm o} L_{\rm NaAl^{+4}, VaSi^{+4}:Si^{+4}:O^{-2}}$$
(3.13)

3.5.6. Oxide liquid

The oxide liquid for the Na₂O-Al₂O₃-SiO₂ system has been modeled using the TSPIL as:

 $(Al^{+3}, Na^{+1})_P(AlO_2^{-1}, O^{-2}, SiO_4^{-4}, SiO_2^0)_Q$

Mao et al.,¹⁰⁰ included SiO_2^0 in the anionic sublattice to account for the silica network in the liquid. Network Si are altered with the addition of oxygen from a basic oxide such as Na₂O to form the anion SiO_4^{-4} ; hence the inclusion of SiO_4^{-4} on the anionic sublattice. Benoit & Ispas¹⁰¹ experimentally determined that the addition of a basic oxide such as CaO to liquid Al₂O₃-SiO₂ acted to increase the predominance of 4 coordinated Al. Also, due to the amphoteric character of Al₂O₃, Mao et al.¹⁰⁰ concluded that the dissociation of Al₂O₃ will result in the partial formation of Al⁺³ with free O atoms associating with other Al atoms until a complete network is formed. Mao et al.¹⁰⁰ modeled this network with an Al⁺³ cation and AlO₂⁻¹ anion. As Na₂O is a more basic oxide than CaO, which was the oxide explicitly considered by Mao et al.,¹⁰⁰ this approach has been used in the current work.

The resultant Gibbs energy relation for the oxide liquid is defined by Equation (3.14).

$$\begin{aligned} G_{m}^{liquid} &= y_{Al^{+3}} y_{Alo_{2}^{-1}} \circ G_{Al_{4}O_{6}} + y_{Al^{+3}} y_{O^{-2}} \circ G_{Al_{2}O_{3}} + y_{Al^{+3}} y_{Slo_{4}^{-4}} \circ G_{Al_{4}Sl_{3}O_{12}} + \end{aligned} (3.14) \\ y_{Na^{+1}} y_{Alo_{2}^{-1}} \circ G_{NaAlO_{2}} + y_{Na^{+1}} y_{O^{-2}} \circ G_{Na_{2}O} + y_{Na^{+1}} y_{Slo_{4}^{-4}} \circ G_{Na_{4}Slo_{4}} + (3y_{Al^{+3}} + y_{Na^{+1}}) (y_{Slo_{2}^{0}} \circ G_{Slo_{2}^{0}}) + (y_{Alo_{2}^{-1}} + 2y_{O^{-2}} + 4y_{Slo_{4}^{-4}}) RT (y_{Al^{+3}} lny_{Al^{+3}} + y_{Na^{+1}} lny_{Na^{+1}}) + \\ (3y_{Al^{+3}} + y_{Na^{+1}}) RT (y_{Alo_{2}^{-1}} lny_{Alo_{2}^{-1}} + y_{O^{-2}} lny_{O^{-2}} + y_{Slo_{4}^{-4}} lny_{Slo_{4}^{-4}} + y_{Slo_{2}^{0}} lny_{Slo_{2}^{0}}) + \\ y_{Al^{+3}} y_{Alo_{2}^{-1}} y_{Slo_{2}^{0}} \left[\circ L_{Al^{+3},Alo_{2}^{-1},Slo_{2}^{0}} + 1 L_{Al^{+3},Alo_{2}^{-1},Slo_{2}^{0}} (y_{Alo_{2}^{-1}} - y_{Slo_{2}^{0}})^{2} \right] + y_{Al^{+3}} y_{Na^{+1}} y_{Alo_{2}^{-1}} \left[\circ L_{Al^{+3},Na^{+1};Alo_{2}^{-1}} + 1 L_{Al^{+3},Alo_{2}^{-1},Slo_{2}^{0}} (y_{Alo_{2}^{-1}} - y_{Slo_{2}^{0}})^{2} \right] + y_{Al^{+3},Alo_{2}^{-1},Slo_{2}^{0}} (y_{Alo_{2}^{-1}} - y_{Slo_{2}^{0}})^{2} \right] + y_{Al^{+3},Na^{+1};Alo_{2}^{-1},Slo_{2}^{0}} (y_{Alo_{2}^{-1}} - y_{Slo_{2}^{0}})^{2} + y_{Al^{+3},Na^{+1};Alo_{2}^{-1},Slo_{2}^{0}} (y_{O^{-2}} - y_{Slo_{2}^{0}})^{2} \right] + y_{Al^{+3},Na^{+1};Alo_{2}^{-1},Slo_{2}^{0}} (y_{O^{-2}} - y_{Slo_{2}^{0}})^{2} \right] + 2 L_{Al^{+3},Na^{+1};Alo_{2}^{-1},Slo_{2}^{0}} (y_{O^{-2}} - y_{Slo_{2}^{0}})^{2} + 2 L_{Na^{+1};O^{-2},Slo_{2}^{0}} (y_{O^{-2}} - y_{Slo_{2}^{0}})^{3} \right] + y_{Na^{+1}} y_{Slo_{4}^{-4}} y_{Slo_{2}^{0}} \left[\circ L_{Na^{+1};Slo_{4}^{-4},Slo_{2}^{0}} (y_{Slo_{4}^{-4}} - y_{Slo_{2}^{0}})^{3} \right] + y_{Na^{+1}} y_{Slo_{4}^{-4}} y_{Slo_{2}^{0}} \left[Alo_{2}^{-1} L_{Na^{+1};Alo_{2}^{-1},Slo_{2}^{-4}} (y_{Alo_{2}^{-1}} - y_{Slo_{2}^{0}})^{3} \right] + y_{Na^{+1}} y_{Alo_{2}^{-1}} y_{Slo_{4}^{-4}} y_{Slo_{2}^{0}} \left[Alo_{2}^{-1} L_{Na^{+1};Alo_{2}^{-1},Slo_{2}^{-4}} (y_{Alo_{2}^{-1}} - y_{Slo_{2}^{0}})^{3} \right] + y_{Na^{+1}} y_{Alo_{2}^{-1}} y_{Slo_{4}^{-4}} y_{Slo_{2}^{-4}} y_{Slo_{2}^{-4}} \left[Alo_{2}^{-$$

The reciprocal and zeroth order Na^{+1} :AlO₂⁻¹,O⁻² as well as the second order Al⁺³:AlO₂⁻¹,SiO₂⁰ interaction parameters were necessary to suppress computed unobserved miscibility gaps. Additionally, the enthalpy and entropy values of the Na₁₀SiO₇ and Na₆Si₂O₇ compounds were determined from the optimization as these values are not well determined experimentally.⁸¹ The Na₄SiO₄ and NaAlO₂ end-member enthalpy values were

also optimized in this work to obtain an overall good fit of the liquidus in the pseudobinary subsystems.

The Na^{+1} :SiO₄⁻⁴,SiO₂⁰ interaction parameters are set equal to those for Na^{+1} :O⁻²,SiO₂⁰ per negative charge:

$${}^{k}L_{Na^{+1}:SiO4_{4}^{-4},SiO_{2}^{0}} = 2 {}^{k}L_{Na^{+1}:0^{-2},SiO_{2}^{0}}$$
(3.15)

with values for the parameters of the oxide liquid model listed in Table 3.3.

3.6. Discussion

A majority of the experimental data for the Na₂O-Al₂O₃-SiO₂ system has been previously critically assessed (see Swamy et al.⁸⁸ and Mao et al.⁸⁹ for the Al₂O₃-SiO₂ pseudobinary, Lambotte & Chartrand⁸¹ for the Na₂O-SiO₂ pseudobinary, and Lambotte & Chartrand⁷⁶ for the Na₂O-Al₂O₃ and Na₂O-Al₂O₃-SiO₂ pseudobinary and -ternary systems, respectively) and thus were not repeated in this work.

3.6.1. Al₂O₃-SiO₂ pseudobinary system

Phase equilibria were used as the primary source of experimental data with generally good agreement between determinations of the liquidus temperatures of the phases. However, as noted by Mao et al.,⁸⁹ there exist large uncertainties in the available activity data, which restricts their utility.

Fig. 3.1 indicates the cristobalite liquidus agrees with the one experimental data point available and that there is a good overall fit to the mullite liquidus. Corundum liquidus data is sparse but what is available is reproduced with sufficient accuracy. All invariant points have been well fit by the mullite CEF and oxide liquid TSPIL models including the SiO₂ (high-cristobalite) + mullite eutectic at 1820 K as reported by Howald & Eliezer⁹¹ (Table 3.4).

3.6.2. Na₂O-Al₂O₃ pseudobinary system

The β -Al₂O₃ + NaAlO₂ eutectic, β -Al₂O₃ melting point, and β -Al₂O₃ and corundum liquidus data measured by Rolin & Thanh¹⁰² as well as the NaAlO₂ melting point reported by Weber & Venero¹⁰³ are accurately reproduced by the condensed phase Gibbs energies and the oxide liquid model (Fig. 3.2 & Table 3.4).

3.6.3. Na₂O-SiO₂ pseudobinary system

In considering the invariant points of the Na₂O-SiO₂ phase diagram (Fig. 3.3) a compromise was required with respect to the fits of the observed Na₁₀SiO₇ and Na₄SiO₄ melting and eutectic points containing either or both phases, with a greater weight given to the melting temperatures. Hence, the Na₁₀SiO₇ and Na₄SiO₄ phase melting points are well fit while the eutectic points show a greater discrepancy (Table 3.4). Regardless, the Na₂O-SiO₂ system when extended to include Al₂O₃ well-reproduced experimental observations.

A better fit of the partial Na₂O(β) Gibbs energy data for the Na₄SiO₄ + Na₂SiO₃ and Na₄SiO₄ + Na₆Si₂O₇ equilibrium compositions in Fig. 3.4 could be attained by fitting the enthalpy of Na₄SiO₄ to the partial Gibbs energy data. It was decided, however, to retain the Na₄SiO₄ Gibbs energy formalism derived in the assessment of Wu et al.⁸⁴ as the liquidus and melting point of Na₄SiO₄ are well predicted in that assessment, with the oxide liquid model of Na₄SiO₄ behavior considered accurate. A good fit of the oxide liquid model parameters to the enthalpy of mixing and Na₂O activity data was obtained (Fig. 3.5 & Fig. 3.6).

3.6.4. Na₂O-Al₂O₃-SiO₂ pseudoternary system

All pseudoternary $Na_2O-Al_2O_3-SiO_2$ isoplethal section liquidus and invariant data are well reproduced as indicated in Fig. 3.7 – Fig. 3.16 as well as in the data comparison in

Table 3.5. The difference with respect to activity apparent in Fig. 3.8 does not significantly affect agreement between the computed and observed phase equilibria. All pseudoternary two and three phase equilibria data at 1873 K are accurately reproduced (Fig. 3.9), and all liquidus projection invariant points for the Na₂O-Al₂O₃-SiO₂ system are well-reproduced by the pseudoternary CEF and TSPIL models (Fig. 3.10 & Table 3.6).

3.7. Summary

The composition of potential vitrified high-level defense nuclear waste to be produced at the Hanford site can be prone to nepheline precipitation¹⁻⁸, which would have the effect of degrading the durability of the glass matrix.⁷ Thus, to avoid the problem, waste loading may be restricted to possibly over-conservative levels. An accurate simulation of time-dependent nepheline precipitation behavior in the vitrification of the waste, however, would allow more closely controlled compositions, and thus possibly provide an opportunity to confidently increase waste loading.

The thermodynamic models and values for the Na₂O-Al₂O₃-SiO₂ system developed in this work is an initial step in obtaining a practical simulation based on a quantitative representation of nepheline formation during vitrification. The Na₂O-Al₂O₃-SiO₂ pseudobinary subsystems and pseudoternary overall system were assessed and successfully optimized to reproduce experimentally determined phase equilibria and thermochemical data. Thus, a consistent set of thermochemical values and models that represent the system was developed and can be used in the simulation of waste glass behavior. To represent the waste glass with important additional constituents found in practical formulations, Fe, Mg, Mn, Ca, B, and K, will be included in the next phase of the current effort. The resulting database, while of value in providing a baseline for nepheline precipitation at equilibrium,

will also be necessary for creating phase field models of nepheline nucleation and grain growth for simulating process dependent behavior. Such an ultimate understanding may lead to significant improvements in the production efficiency for producing durable highlevel defense nuclear waste glass at the Hanford site.

3.8. Acknowledgements

The authors gratefully acknowledge the financial support provided by the U.S. Department of Energy Waste Treatment and Immobilization Plant Project. The authors also thank Albert Kruger, Michael Schweiger, and Chuck Henager for their involvement with the commencement of this research project.

3.9. Tables

Table 3.1. Enthalpy, entropy, and heat capacity constant values of specified compounds

				$C_{\rm p}^{*}$ constant	ts						
Compound	T range (K)	$\begin{array}{l} \Delta H^0_{298.15K} \\ (\mathrm{J}\cdot\mathrm{mol}^{-\mathrm{l}}) \end{array}$	$S^0_{298.15 K}$ (J · mol ⁻¹ · K ⁻¹)) ^a	b	с	d	е	ſ	g	h Reference
Al ₂ O ₃ (corundum)	$\begin{array}{l} 298.15 < T < 600.00 \\ 600.00 < T < 1500.00 \\ 1500.00 < T < 2327.00 \\ 2327.00 < T < 4000.00 \end{array}$	-1676383.29	50.94	67.48039 116.2579 156.0582 192.464	134.9399 14.45137 -14.18213	-18.77562 -42.41404 -247.3334	2-85232.68 -1671.19 3776.411				Bale et al. ⁴³
$Al_2O_3(\ell)$	$\begin{array}{l} 298.15 < T < 600.00 \\ 600.00 < T < 1500.00 \\ 1500.00 < T < 2327.00 \\ 2327.00 < T < 4000.00 \end{array}$	-1565298.09	98.6775	67.48039 116.2579 156.0582 192.464	134.9399 14.45137 -14.18213	-18.77562 -42.41404 -247.3334	2-85232.68 -1671.19 3776.411				Bale et al. ⁴³
Al ₂ SiO ₅ (sillimanite)	298.15 < T < 3000.00	-2587770	95.79	183.87	18.15	-123.6			16.024	3205.2	Saxena et al. ¹⁰⁴
$NaAlO_2(\beta)$	298.15 < T < 2140.00	-1134391.9	70.36	139.1606				-1143.4999	1.40428967		Lambotte & Chartrand ⁷⁶
$NaAlO_2(\gamma)$	298.15 < T < 2140.00	-1133094.9	72.1127	139.1606				-1143.4999	1.40428967		Lambotte & Chartrand ⁷⁶
$NaAlO_2(\delta)$	298.15 < T < 2140.00	-1131939.9	72.7989	139.1606				-1143.4999	1.40428967		Lambotte & Chartrand ⁷⁶
$NaAl_{11}O_{17}(\beta'-Al_2O_3)$	298.15 < T < 2400.00	-9518595	350.6617	1033.31968	3	-28.59755	;	-9556.42804	3.42089133		Lambotte & Chartrand ⁷⁶
$Na_2Al_{12}O_{19}(\beta"-Al_2O_3)$	298.15 < T < 2000.00	-10690701.36	6418.6424	1157.35601	19.93868	-34.89447	-6403.41	-10425.19423	3 3.73188145		$\Delta H^0_{298.15 K}$ this work, $S^0_{298.15 K}$ and C_p^{76}
NaAlSiO ₄ (α-carnegieite) 298.15 < T < 2000.00	-2083514.4	127.8933	236.01526		-35.34312	2	-1592.79852	4.2757827		Lambotte & Chartrand ⁷⁶
$NaAlSiO_4(\beta-nepheline)$	298.15 < T < 2000.00	-2093227.3	125.5874	228.26221		-19.39261		-1641.05096	2.24825816	7	Lambotte & Chartrand ⁷⁶
NaAlSi ₃ O ₈ (low-albite)	298.15 < T < 2000.00	-3935000	207.4	394.18993		-76.68033	;	-2438.11327	10.17706412	2	Lambotte & Chartrand ⁷⁶
NaAlSi ₃ O ₈ (high-albite)	298.15 < T < 2000.00	-3923302.7	219.6723	394.18993		-76.68033	;	-2438.11327	10.17706412	2	Lambotte & Chartrand ⁷⁶
NaAlSi ₃ O ₈ (monalbite)	298.15 < T < 2000.00	-3915260.6	226.1	394.18993		-76.68033	;	-2438.11327	10.17706412	2	Lambotte & Chartrand ⁷⁶
$Na_2O(\gamma)$	298.00 < T < 1405.00 1405.0 0< T < 1500.00	-417982	75.0610	66.216 104.6	43.8651	-8.1337	-14087.5004	4			Wu et al. ⁸⁴
$Na_2O(\beta)$	298.00 < T < 1405.00 1405.0 0< T < 1500.00	-416224.72	76.7788	66.216 104.6	43.8651	-8.1337	-14087.5004	4			Wu et al. ⁸⁴
$Na_2O(\alpha)$	298.00 < T < 1405.00 1405.0 0< T < 1500.00	-404300.32	86.3720	66.216 104.6	43.8651	-8.1337	-14087.5004	4			Wu et al. ⁸⁴

${}^{*}C_{p}(J \cdot \text{mol}^{-1} \cdot \text{K}^{-1}) = a + b \cdot 10^{-3}T + c \cdot 10^{5}T^{-2} + d \cdot 10^{-9}T^{2} + eT^{-0.5} + f \cdot 10^{8}T^{-3} + gT^{-1} + h \cdot 10^{-8}T^{3}$

				$C_{\rm p}^{*}$ constant	its						
Compound	T range (K)	$\begin{array}{l} \Delta H^0_{298.15K} \\ (\mathrm{J}\cdot\mathrm{mol}^{-1} \end{array}$	$S^0_{298.15 K}$ $(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$) ^{<i>a</i>}	b	с	d	е	f .	g h	Reference
$Na_2O(\ell)$	298.00 < T < 1405.00 1405.0 0< T < 1500.00	-356602.72	120.3205	66.216	43.8651	-8.1337	-14087.5004	ł			Wu et al. ⁸⁴
Na ₂ SiO ₃ (s)	$\begin{array}{c} 298.15 < T < 1363.00 \\ 1363.00 < T < 1450.00 \end{array}$	-1561430	113.847	234.77 177.31792				-2218.9	1.353		Bale et al. ⁴³
$Na_2Si_2O_5(\alpha)$	$298.15 < T < 1148.00 \\ 1148.00 < T < 1250.00$	-2470070	165.7	250.69 261.20712		-156.51			22.17		Bale et al. ⁴³
Na ₂ Si ₂ O ₅ (β)	$\begin{array}{l} 298.15 < T < 951.00 \\ 951.00 < T < 1148.00 \\ 1148.00 < T < 1250.00 \end{array}$	-2469652	166.1395	250.69 292.88 261.20712		-156.51			22.17		Bale et al. ⁴³
$Na_2Si_2O_5(\gamma)$	$\begin{array}{l} 298.15 < T < 951.00 \\ 951.00 < T < 1148.00 \\ 1148.00 < T < 1250.00 \end{array}$	-2469024	166.7804	250.69 292.88 261.20712		-156.51			22.17		Bale et al. ⁴³
Na ₄ SiO ₄ (s)	$\begin{array}{l} 298.15 < T < 1358.00 \\ 1363.00 < T < 1450.00 \end{array}$	-2108979	195.811	162.59024 259.408	74.22416						Bale et al. ⁴³
$Na_6Si_2O_7(s)$	298.15 < T < 1397.00	-3617193.47	349.1774	461.006		-203.6927		-1005.180017	7 32.28358041		$\varDelta H^0_{298.15K}$ and $S^0_{298.15K}$ this work, $\mathrm{C_p}^{43}$
Na ₆ Si ₈ O ₁₉ (s)	298.15 < T < 1082.00	-9187800	636.5	987.691985	5	-355.406298		-4020.72	54.10599850		Bale et al. ⁴³
Na ₁₀ SiO ₇ (s)	298.15 < T < 1358.00	-3327528.29	528.3676	361.238242	2 205.819466	-24.4011	-42262.50116	6			$\varDelta H^0_{298.15K}$ and $S^0_{298.15K}$ this work, ${\rm C_p}^{43}$
SiO ₂ (low-quartz)	$\begin{array}{l} 298.15 < T < 373.00 \\ 373.00 < T < 848.00 \\ 848.00 < T < 850.00 \end{array}$	-910699.94	41.46	80.0119918 80.0119918 0.04184	3 3 8.4400217	-35.46684 -35.46684	-45212.70148	-240.2759989 8 -240.2759989	9 4.915683694 9 4.915683694	6.055044634	Wu et al. ⁸⁴ 4
SiO ₂ (high-quartz)	$\begin{array}{l} 298.15 < T < 1995.99 \\ 1995.99 < T < 3000.00 \end{array}$	-908626.77	44.2068	80.011992 85.772		-35.46684		-240.276	4.91568369		Wu et al. ⁸⁴
SiO ₂ (high-tridymite)	$\begin{array}{l} 298.15 < T < 1991.28 \\ 1991.28 < T < 3000.00 \end{array}$	-907045.13	45.5237	75.372668 85.772		-59.5809508	;		9.58246123		Wu et al. ⁸⁴
SiO ₂ (high-cristobalite) 298.15 < T < 1995.99 1995.99 < T < 3000.00	-906377.23	46.0288	83.513598 85.772		-24.5536		-374.693	2.80072194		Wu et al. ⁸⁴
$SiO_2(\ell)$	298.15 < T < 1995.99 1995 99 < T < 3000 00	-896795.87	50.8291	83.513598 85.772		-24.5536		-374.693	2.80072194		Wu et al. ⁸⁴

Table 3.1 cont d. Enthalpy, entropy, and neat capacity constant values of specified compound	Table 3.1 cont'd. F	Enthalpy, entropy	, and heat capac	city constant value	s of specified	compounds
--	---------------------	-------------------	------------------	---------------------	----------------	-----------

49

Table 3.2. Model parameters for solid solutions

Mullite $(Al^{+3})_2[Al^{+3}, Si^{+4}]\{0^{-2}, Va\}_5$ ${}^{\circ}G_{Al_3O_5^{-1}} = {}^{\circ}G_{Al_3Va^{+9}} = 3/2^{\circ}G_{Al_2O_3(corundum)} + 86508.38 - 0.418T$ ${}^{\circ}G_{Al_2SiO_5} = {}^{\circ}G_{Al_2SiVa^{+10}} = {}^{\circ}G_{Al_2SiO_5(sillimanite)} + 9957.92 - 3.347T$ ${}^{0}L_{Al^{+3}:Al^{+3},Si^{+4}:O^{-2}} = {}^{0}L_{Al^{+3}:Al^{+3},Si^{+4}:Va} = -92048.0$

 $\begin{array}{l} \beta \text{-Al}_2\text{O}_3 \ (\text{Na}_2\text{O})_1 [\text{Al}_2\text{O}_3]_{11} \{\text{Na}_2\text{O}, \text{Va}\}_1 \\ {}^{\text{o}}G_{\text{Na}_4\text{Al}_{22}\text{O}_{35}} = 2^{\text{o}}G_{\text{Na}\text{Al}_{11}\text{O}_{17}} + {}^{\text{o}}G_{\text{Na}_2\text{O}(\alpha)} - 154808 \\ {}^{\text{o}}G_{\text{Na}_2\text{Al}_{22}\text{O}_{34}} = 2^{\text{o}}G_{\text{Na}\text{Al}_{11}\text{O}_{17}} \\ {}^{0}L_{\text{Na}_2\text{O}:\text{Al}_2\text{O}_3:\text{Na}_2\text{O},\text{Va}} = -271700 - 3T \end{array}$

Sodium aluminate $((Na - Al)^{+4}, (Va - Si)^{+4})_1[0^{-2}]_2$ ${}^{o}G_{NaAlO_2} = {}^{o}G_{NaAlO_2(\delta)}$ ${}^{o}G_{SiO_2} = {}^{o}G_{SiO_2(high-cristobalite)} + 6276.0 + 4.1840T$ ${}^{0}L_{NaAl^{+4}, VaSi^{+4}:O^{-2}} = -50100 - 43.26T$ ${}^{1}L_{NaAl^{+4}, VaSi^{+4}:O^{-2}} = -25100 + 1.13T$

Nepheline $((Na - Al)^{+4}, (Va - Si)^{+4})_8 [Si^{+4}]_8 \{0^{-2}\}_{32}$ ${}^{\circ}G_{Na_8Al_8Si_8O_{32}} = 8^{\circ}G_{NaAlSiO_4(\beta-nepheline)}$ ${}^{\circ}G_{Si_{16}O_{32}} = 16 ({}^{\circ}G_{SiO_2(high-tridymite)} + 6276.0)$ ${}^{0}L_{NaAl^{+4}, VaSi^{+4}:Si^{+4}:O^{-2}} = 24980 - 75.075T$

Carnegieite $((Na - Al)^{+4}, (Va - Si)^{+4})_4 [Si^{+4}]_4 \{0^{-2}\}_{16}$ ${}^{o}G_{Na_4Al_4Si_4O_{16}} = 4^{o}G_{NaAlSiO_4(\alpha-carnegieite)}$ ${}^{o}G_{Si_8O_{16}} = 8 ({}^{o}G_{SiO_2(high-cristobalite)} + 4184.0)$ ${}^{0}L_{NaAl^{+4}, VaSi^{+4}:Si^{+4}:O^{-2}} = 36000 - 18.1T$

Table 3.3. Model parameters for oxide liquid

Oxide liquid $(Al^{+3}, Na^{+1})_{P}(AlO_{2}^{-1}, O^{-2}, SiO_{4}^{-4}, SiO_{2}^{0})_{O}$ ${}^{\mathrm{o}}G_{\mathrm{Al}^{+3}:\mathrm{AlO}_{2}^{-1}} = 2^{\mathrm{o}}G_{\mathrm{Al}_{2}\mathrm{O}_{3}(\ell)}$ ${}^{\mathrm{o}}G_{\mathrm{A1}^{+3}:\mathrm{O}^{-2}} = {}^{\mathrm{o}}G_{\mathrm{A1}_{2}\mathrm{O}_{3}(\ell)} + 900000$ ${}^{\mathrm{o}}G_{\mathrm{Al}^{+3}:\mathrm{SiO}_{4}^{-4}} = 2{}^{\mathrm{o}}G_{\mathrm{Al}_{2}\mathrm{O}_{3}(\ell)} + 3{}^{\mathrm{o}}G_{\mathrm{SiO}_{2}(\ell)} + 300000$ ${}^{\mathrm{o}}G_{\mathrm{Al}^{+3}:\mathrm{SiO}_{2}^{0}} = 3{}^{\mathrm{o}}G_{\mathrm{SiO}_{2}(\ell)}$ ${}^{\mathrm{o}}G_{\mathrm{Na}^{+1}:\mathrm{AlO}_{2}^{-1}} = 1/2^{\mathrm{o}} G_{\mathrm{Al}_{2}\mathrm{O}_{3}(\ell)} + 1/2^{\mathrm{o}} G_{\mathrm{Na}_{2}\mathrm{O}(\ell)} - 111739.198 + 14.17779T$ ${}^{\mathrm{o}}G_{\mathrm{Na}^{+1}\cdot\mathrm{O}^{-2}} = {}^{\mathrm{o}}G_{\mathrm{Na}_{2}\mathrm{O}(\ell)}$ ${}^{\mathrm{o}}G_{\mathrm{Na}^{+1}:\mathrm{SiO}_{4}^{-4}} = 2{}^{\mathrm{o}}G_{\mathrm{Na}_{2}\mathrm{O}(\ell)} + {}^{\mathrm{o}}G_{\mathrm{SiO}_{2}(\ell)} - 353175.963 + 24.67013T$ ${}^{\mathrm{o}}G_{\mathrm{Na}^{+1}:\mathrm{SiO}_{2}^{0}} = {}^{\mathrm{o}}G_{\mathrm{SiO}_{2}(\ell)}$ ${}^{0}L_{\text{Al}^{+3}:\text{AlO}_{2}^{-1},\text{SiO}_{2}^{0}} = 313000 - 132.44T$ ${}^{1}L_{\text{Al}^{+3}:\text{AlO}_{2}^{-1},\text{SiO}_{2}^{0}} = 1292.6 - 7.613T$ ${}^{2}L_{A1^{+3}:A10^{-1}.SiO^{0}} = -10T$ ${}^{0}L_{\text{Al}^{+3},\text{Na}^{+1}:\text{AlO}_{2}^{-1}} = -18000 - 11.64T$ ${}^{1}L_{\text{Al}^{+3},\text{Na}^{+1}:\text{AlO}_{2}^{-1}} = 239000 - 84.08T$ ${}^{0}L_{\mathrm{Na}^{+1}:\mathrm{A1O}_{2}^{-1},\mathrm{O}^{-2}} = -12T$ ${}^{0}L_{\mathrm{Na}^{+1}:\mathrm{O}^{-2},\mathrm{SiO}_{2}^{0}} = -143800 + 18.318T$ ${}^{1}L_{\mathrm{Na}^{+1}:\mathrm{O}^{-2}.\mathrm{SiO}_{2}^{0}} = -15400 + 3.029T$ ${}^{2}L_{\mathrm{Na}^{+1}:\mathrm{O}^{-2},\mathrm{SiO}_{2}^{0}} = 810 - 2.6381T$ ${}^{3}L_{\mathrm{Na}^{+1}:\mathrm{O}^{-2},\mathrm{SiO}_{2}^{0}} = -34800 + 14.38T$ ${}^{0}L_{\mathrm{Na}^{+1}:\mathrm{SiO}_{4}^{-4},\mathrm{SiO}_{2}^{0}} = 2^{0}L_{\mathrm{Na}^{+1}:\mathrm{O}^{-2},\mathrm{SiO}_{2}^{0}}$ ${}^{1}L_{\mathrm{Na}^{+1}:\mathrm{SiO}_{4}^{-4},\mathrm{SiO}_{2}^{0}} = 2{}^{1}L_{\mathrm{Na}^{+1}:\mathrm{O}^{-2},\mathrm{SiO}_{2}^{0}}$ ${}^{2}L_{\mathrm{Na}^{+1}:\mathrm{SiO}_{4}^{-4},\mathrm{SiO}_{2}^{0}} = 2{}^{2}L_{\mathrm{Na}^{+1}:\mathrm{O}^{-2}.\mathrm{SiO}_{2}^{0}}$ ${}^{3}L_{\mathrm{Na}^{+1}:\mathrm{SiO}_{4}^{-4}}\mathrm{SiO}_{2}^{0} = 2{}^{3}L_{\mathrm{Na}^{+1}:\mathrm{O}^{-2}:\mathrm{SiO}_{2}^{0}}$ ${}^{0}L_{\mathrm{Na}^{+1}:\mathrm{O}^{-2}.\mathrm{SiO}_{4}^{-4}} = -176800$ ${}^{0}L_{\mathrm{Na}^{+1}:\mathrm{AlO}_{2}^{-1},\mathrm{SiO}_{2}^{0}} = -177680 + 27.968T$ ${}^{1}L_{\mathrm{Na}^{+1}:\mathrm{AlO}_{2}^{-1},\mathrm{SiO}_{2}^{0}} = -42200$ $^{\text{AIO}_2^{-1}}L_{\text{Na}^{+1}:\text{AIO}_2^{-1},\text{SiO}_4^{-4},\text{SiO}_2^{-0}} = -689000 + 334.46\text{T}$ ${}^{\mathrm{SiO}_2^0}L_{\mathrm{Na}^{+1}:\mathrm{AIO}_2^{-1},\mathrm{SiO}_4^{-4},\mathrm{SiO}_2^0} = -14.89 - 155.5\mathrm{T}$ ${}^{0}L_{\text{Al}^{+3},\text{Na}^{+1}:\text{AlO}_{2}^{-1},\text{SiO}_{2}^{0}} = -0.2357$ ${}^{1}L_{\text{Al}^{+3},\text{Na}^{+1}:\text{AlO}_{2}^{-1},\text{SiO}_{2}^{0}} = 305000 - 151.7T$ ${}^{2}L_{\text{Al}^{+3},\text{Na}^{+1}:\text{AlO}_{2}^{-1},\text{SiO}_{2}^{0}} = -45T$ ${}^{0}L_{\text{Al}^{+3},\text{Na}^{+1}:\text{AlO}_{2}^{-1},\text{SiO}_{4}^{-4}} = -350T$

Invariant Point	Calculat	ed	Measured		References
Al ₂ O ₃ -SiO ₂ System (Fig. 3.1)	$X_{Al_{2}O_{3}}^{**}$	<i>T</i> (K)	$X_{Al_2O_3}$	<i>T</i> (K)	
Mullite $T_{\rm m}^{*}$	0.653	2162	0.666	2163	Klug et al. ¹⁰⁵
SiO ₂ (high-cristobalite) + mullite eutectic	0.038	1820	0.0332	1820	Howald & Eliezer ⁹¹
Na ₂ O-Al ₂ O ₃ System (Fig. 3.2)	$X_{Al_2O_3}$	$T(\mathbf{K})$	$X_{Al_2O_3}$	$T(\mathbf{K})$	
$Na_2O(\alpha) T_m$	2.5	1405.0	2 5	1405.2	Wu et al. ⁸⁴
NaAlO ₂ (δ) $T_{\rm m}$		2141	0.500	2140	Weber & Venero ¹⁰³
NaAlO ₂ (δ) + β -Al ₂ O ₃ eutectic	0.650	1859	0.652	1858	Weber & Venero ¹⁰³
β -Al ₂ O ₃ $T_{\rm m}$	0.893	2272	0.895	2273	Rolin & Than ¹⁰²
SiO_2 (high-cristobalite) T_m		1995		1996	Weber & Venero ¹⁰³
Al ₂ O ₃ (corundum) $T_{\rm m}$		2327		2327	Eriksson et al. ⁸⁰
Na ₂ O-SiO ₂ System (Fig. 3.3)	X_{SiO_2}	<i>T</i> (K)	X_{SiO_2}	$T(\mathbf{K})$	
$Na_2O(\beta) + Na_{10}SiO_7$ eutectic	0.128	1209.5	0.14	1123.2	Rys ¹⁰⁶
$Na_{10}SiO_7 T_m$		1244.3		1245.2	Rys ¹⁰⁶
$Na_{10}SiO_7 + Na_4SiO_4$ eutectic	0.235	1046.2	0.21	1139.2	Rys ¹⁰⁶
Na ₄ SiO ₄ $T_{\rm m}$		1381		1391	Kracek ¹⁰⁷
				1356	D'Ans & Lottler ¹⁰⁸
				1383	Rys ¹⁰⁶
$Na_4SiO_4 + Na_6Si_2O_7$ eutectic	0.370	1364	0.373	1273	D'Ans & Lottler ¹⁰⁸
			0.365	1302	Rys ¹⁰⁶
$Na_6Si_2O_7 T_m$		1389		1395	D'Ans & Lottler ¹⁰⁸
				1380	Meshalkin ¹⁰⁹
$Na_6Si_2O_7 + Na_2SiO_3$ eutectic	0.452	1303	0.455	1288	D'Ans & Lottler ¹⁰⁸
			0.451	1295	Meshalkin ¹⁰⁹
$Na_2SiO_3 T_m$		1362		1361	D'Ans & Lottler ¹⁰⁸
				1362	Kracek ¹⁰⁷
				1363	Willgallis ¹¹⁰
				1361	D'Ans & Lottler ¹⁰⁸
				1366	Meshalkin ¹⁰⁹
				1364	Rys ¹⁰⁶
$Na_2SiO_3 + Na_2Si_2O_5(\gamma)$ eutectic	0.630	1110	0.625	1113	D'Ans & Lottler ¹⁰⁸
			0.628	1119	Kracek ¹⁰⁷
			0.633	1110	Willgallis ¹¹⁰
$Na_2Si_2O_5(\gamma) T_m$		1148		1147	Kracek, ¹⁰⁷ D'Ans &
$Na_2Si_2O_5(\gamma) + Na_6Si_8O_{19}$ peritectic	0.740	1058		1081	Williams & Glasser ¹¹¹
				1071	Schairer ¹¹²
$Na_6Si_8O_{19} + SiO_2(high-quartz)$ eutectic	0.746	1057	0.735	1066	D'Ans & Lottler ¹⁰⁸
· • • •			0.745	1066	Kracek ¹⁰⁷
			0.725	1072	Williams & Glasser ¹¹¹
			0.746	1061	Schairer ¹¹²

Table 3.4. Invariant points of Na₂O-Al₂O₃-SiO₂ pseudobinary subsystems

 ${}^{*}T_{m}$ = melting temperature ${}^{**}X_{compound}$ = mole fraction of compound

Table 3.5. Invariant points ofNa₂O-Al₂O₃-SiO₂ isopleths

Invariant Point	Calculated		Measured		Reference
Na ₂ Si ₂ O ₅ -NaAlSi ₃ O ₈ System (Fig. 3.7)	X _{NaAlSi3O8}	$T(\mathbf{K})$	X _{NaAlSi3O8}	$T(\mathbf{K})$	
$Na_2Si_2O_5 + NaAlSi_3O_8$ (high-albite) eutectic	0.290	1040	0.298	1040	Schairer & Bowen ⁷⁴
NaAlSi ₃ O ₈ (monalbite) T _m		1393		1393	Schairer & Bowen ⁷⁴
Na2Si2O5-NaAlSiO4 System (Fig. 3.11)	$X_{\rm NaAlSiO_4}$	$T(\mathbf{K})$	$X_{\rm NaAlSiO_4}$	$T(\mathbf{K})$	
$Na_2Si_2O_5(\gamma)$ + nepheline eutectic	0.353	1019	0.345	1042	Tilley ¹¹³
Carnegieite T _m		1796		1799	Tilley ¹¹³
Na ₂ SiO ₃ -NaAlO ₂ System (Fig. 3.12)	$X_{\rm NaAlO_2}$	$T(\mathbf{K})$	$X_{\rm NaAlO_2}$	$T(\mathbf{K})$	
Na_2SiO_3 + sodium aluminate eutectic	0.293	1248	0.270	1242	Schairer & Bowen ⁷⁴
Sodium aluminate $T_{\rm m}$		2141		2141	Schairer & Bowen ⁷⁴
Na ₂ SiO ₃ -NaAlSiO ₄ System (Fig. 3.13)	$X_{\rm NaAlSiO_4}$	$T(\mathbf{K})$	$X_{\rm NaAlSiO_4}$	$T(\mathbf{K})$	
Na_2SiO_3 + nepheline eutectic	0.458	1182	0.413	1193	Tilley ¹¹³
NaAlO ₂ -SiO ₂ System (Fig. 3.14)	X_{SiO_2}	$T(\mathbf{K})$	X_{SiO_2}	<i>T</i> (K)	
Nepheline + NaAlSi ₃ O ₈ (monalbite) eutectic	0.695	1349	0.693	1341	Greig ¹¹⁴
NaAlSi ₃ O ₈ (monalbite) + SiO ₂ (high-tridymite)	0.829	1315	0.834	1337	Schairer & Bowen ⁷⁴
NaAlSi ₃ O ₈ -Al ₂ O ₃ System (Fig. 3.15)	$X_{Al_2O_3}$	$T(\mathbf{K})$	$X_{Al_2O_3}$	$T(\mathbf{K})$	
NaAlSi ₃ O ₈ (monalbite) + mullite eutectic	0.040	1382	0.038	1378	Schairer & Bowen ⁷⁴
NaAlSiO ₄ -Al ₂ O ₃ System (Fig. 3.16)	$X_{Al_2O_3}$	<i>T</i> (K)	$X_{Al_2O_3}$	$T(\mathbf{K})$	
Carnegieite + β -Al ₂ O ₃ eutectic	0.076	1759	0.086	1764	Schairer & Bowen ⁷⁴

المناركة للاستشارات
Table 3.6. Invariant points of Na₂O-Al₂O₃-SiO₂ system (Fig. 3.10)

Invariant Point	Calculated				Measured				Reference
	X_{Na_2O}	$X_{Al_2O_3}$	X_{SiO_2}	<i>T</i> (K)	X_{Na_2O}	$X_{Al_2O_3}$	X_{SiO_2}	<i>T</i> (K)	
$NaAlSiO_4 + Na_2SiO_3$	0.386	0.114	0.5	1183	0.393	0.107	0.5	1179	Tilley ¹¹³
					0.392	0.108	0.5	1173	Spivak ¹¹⁵
$Na_2Si_2O_5 + NaAlSiO_4$	0.311	0.067	0.622	1020	0.312	0.065	0.623	1041	Tilley ¹¹³
$NaAlSi_3O_8 + NaAlSiO_4$	0.153	0.152	0.695	1350	0.153	0.153	0.694	1341	Greig & Barth ¹¹⁴
$NaAlSi_3O_8 + SiO_2$	0.085	0.085	0.830	1316	0.083	0.083	0.834	1335	Schairer & Bowen ⁷⁴
$NaAlSi_3O_8 + Na_2Si_2O_5$	0.260	0.044	0.696	1041	0.258	0.045	0.697	1040	Schairer & Bowen ⁷⁴
$NaAlSi_3O_8 + Al_2O_3$	0.124	0.133	0.743	1383	0.12	0.158	0.722	1381	Schairer & Bowen ⁷⁴
$NaAlSiO_4 + Al_2O_3$	0.235	0.276	0.489	1758	0.238	0.288	0.475	1748	Schairer & Bowen ⁷⁴
$Na_2SiO_3 + Na_2Si_2O_5 + NaAlSiO_4$	0.311	0.067	0.622	1019	0.327	0.063	0.61	1033	Tilley ¹¹³
$NaAlSi_3O_8 + Na_2Si_2O_5 + SiO_2$	0.234	0.026	0.740	1015	0.214	0.028	0.758	1013	Schairer & Bowen ⁷⁴
$NaAlSi_3O_8 + Al_6Si_2O_{13} + SiO_2$	0.080	0.091	0.829	1298	0.08	0.084	0.835	1323	Schairer & Bowen ⁷⁴
$NaAlSiO4 + Al_6Si_2O_{13} + Al_2O_3$	0.150	0.156	0.695	1346	0.119	0.129	0.752	1377	Schairer & Bowen ⁷⁴
$NaAlSi_3O_8 + NaAlSiO_4 + Al_6Si_2O_{13}$	0.150	0.156	0.695	1346	0.149	0.156	0.695	1336	Schairer & Bowen ⁷⁴
$NaAlSi_3O_8 + NaAlSiO_4 + Na_2Si_2O_5$	0.311	0.067	0.622	1019	0.268	0.078	0.654	1005	Schairer & Bowen ⁷⁴

Fig. 3.1. Computed Al₂O₃-SiO₂ pseudobinary phase diagram with experimental measurements shown as points. Data: $\nabla^{116} \times^{117} \Leftrightarrow^{118} \oplus^{119}$ $\Box^{120} \Box^{121} \bigcirc^{105} \bigstar^{103} \Xi^{122} \times^{105} \nabla^{105} \bigcirc^{105} \bigcirc^{123} +^{124} \diamondsuit^{125} \bigtriangleup^{125} \diamondsuit^{125}$

Fig. 3.2. Computed Na₂O-Al₂O₃ pseudobinary phase diagram with experimental measurements shown as points. Data: $\triangle^{126} \square^{106} \times^{106} \bigcirc^{127} \bigcirc^{103} \square^{74} \square^{128} \times^{102} \bigcirc^{129} \bigcirc^{129} \triangle^{129} \bigcirc^{129} \bigcirc^{129} \triangle^{129} \bigcirc^{131} \square^{102}$

Fig. 3.3. Computed Na₂O-SiO₂ pseudobinary phase diagram with experimental measurements shown as points. Data: $\blacksquare^{84} \square^{106} \times \square^{102} \times \square^{132} \times \square^{107} \otimes \square^{100} \oplus \square^{110} \oplus \square^{134} + \square^{112}$

Fig. 3.4. Partial Gibbs energy for Na₂O(β) within the Na₂O-SiO₂ system with experimental measurements shown as points. Data: $\bigcirc^{135, 136}$

Fig. 3.5. Computed curve of the enthalpy of mixing for Na₂O-SiO₂ at 1450 K with experimental measurements shown as points. Data: $\bigcirc^{137} + {}^{137} \bigcirc^{138} \\$ $\%^{139} \square^{140} \triangle^{140}$

Fig. 3.6. Computed activity curve for Na₂O in Na₂O-SiO₂ liquid with experimental measurements shown as points. Data: $1773 \text{ K}^{141, 142}$ $1573 \text{ K}^{143} \times 1473 \text{ K}^{143}$ $1373 \text{ K}^{143} \times 1573 \text{ K}^{144} \times 1573 \text{ K}^{144} + 1673 \text{ K}^{135, 136}$ $1573 \text{ K}^{135, 136} \bigtriangledown 1473 \text{ K}^{135, 136} \bigtriangleup 1373 \text{ K}^{135, 136} \bigtriangleup 1273 \text{ K}^{135, 136}$

Fig. 3.7. Computed Na₂Si₂O₅-NaAlSi₃O₈ isoplethal section with experimental measurements shown as points. Data: •⁷⁴

Fig. 3.8. Computed activity of Na₂O in the liquid phase as a function of Na₂O/(Na₂O+ SiO₂) for fixed Al₂O₃ contents. Experimental measurements shown as points. Data: $Al_{2O_3} = 0.05^{145} \Box X_{Al_2O_3} = 0.10^{145} \odot X_{Al_2O_3} = 0.15^{145}$

Fig. 3.9. Isothermal section of the Na₂O-Al₂O₃-SiO₂ system at 1873 K with experimental measurements shown as points. Data: $\Phi^{146} \nabla^{146} \mathbb{X}^{146}$

Fig. 3.10. Liquidus projections and invariant points computed for the Na₂O-Al₂O₃-SiO₂ system. Data: $\blacklozenge^{74} \square^{113} \bigcirc^{114} \bigcirc^{115}$

Fig. 3.11. Computed Na₂Si₂O₅-NaAlSiO₄ isoplethal section with experimental measurements shown as points. Data: •⁷⁴

Fig. 3.12. Computed Na₂SiO₃-NaAlO₂ isoplethal section with experimental measurements shown as points. Data: $•^{74}$

Fig. 3.13. Computed Na₂SiO₃-NaAlSiO₄ isoplethal section with experimental measurements shown as points. Data: $\blacklozenge^{113} \diamondsuit^{113}$

Fig. 3.14. Computed NaAlO₂-SiO₂ isoplethal section with experimental measurements shown as points. Data: $\Phi^{74} \bigcirc^{74} \times^{146} \bigcirc^{147} \times^{147} +^{114} \nabla^{114}$

Fig. 3.15. Computed NaAlSi₃O₈-Al₂O₃ isoplethal section with experimental measurements shown as points. Data: $•^{74}$

Fig. 3.16. Computed NaAlSiO₄-Al₂O₃ with experimental measurements shown as points. Data: $•^{74}$

3.11. Copyright permission

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

Apr 08, 2019

This Agreement between University of South Carolina -- Stephen Utlak ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number	4564220804226
License date	Apr 08, 2019
Licensed Content Publisher	John Wiley and Sons
Licensed Content Publication	Journal of the American Ceramic Society
Licensed Content Title	Thermodynamic assessment of the pseudoternary Na2O-Al2O3- SiO2 system
Licensed Content Author	Stephen A. Utlak, Theodore M. Besmann
Licensed Content Date	Sep 27, 2017
Licensed Content Pages	21
Type of use	Dissertation/Thesis
Requestor type	Author of this Wiley article
Format	Print and electronic
Portion	Full article
Will you be translating?	No
Title of your thesis / dissertation	Modeling complex oxides: Thermochemical behavior of nepheline- forming Na-Al-Si-B-K-Li-Ca-Mg-Fe-O and hollandite-forming Ba-Cs- Ti-Cr-Al-Fe-Ga-O systems
Expected completion date	Apr 2019
Expected size (number of pages)	275
Requestor Location	University of South Carolina

	Attn: University of South Carolina
Publisher Tax ID	EU826007151
Total	0.00 USD
Terms and Conditions	

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a"Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a particular work (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that

you opened your RightsLink account (these are available at any time at <u>http://myaccount.copyright.com</u>).

Terms and Conditions

- The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.
- You are hereby granted a personal, non-exclusive, non-sub licensable (on a standalone basis), non-transferable, worldwide, limited license to reproduce the Wiley <u>Materials for the purpose specified in the licensing process</u>. This license, **and any CONTENT (PDF or image file) purchased as part of your order**, is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted by this license must be completed within two years of the date of the grant of this license (although copies prepared before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is expressly excluded from this permission.
- With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may be made based on the Wiley Materials without the prior permission of the respective copyright owner.For STM Signatory Publishers clearing permission under the terms of the <u>STM Permissions Guidelines</u> only, the terms of the license are extended to include subsequent editions and for editions in other languages, provided such editions are for the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts, You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you hereunder to any other person.
- The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto
- NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE

MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.

- WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.
- You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.
- IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.
- Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be affected or impaired thereby.
- The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.
- This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written consent.
- Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.
- These terms and conditions together with CCC's Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement

may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives, and authorized assigns.

- In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall prevail.
- WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
- This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process.
- This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. Although most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of Creative Commons Licenses. The license type is clearly identified on the article. **The Creative Commons Attribution License**

The <u>Creative Commons Attribution License (CC-BY)</u> allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC-BY license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The <u>Creative Commons Attribution Non-Commercial (CC-BY-NC)License</u> permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The <u>Creative Commons Attribution Non-Commercial-NoDerivs License</u> (CC-BY-NC-ND) permits use, distribution and reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no modifications or adaptations are made. (see below)

Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee. Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? <u>customercare@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

Chapter 4

Thermodynamic Assessment of the Na₂O-Al₂O₃-SiO₂-B₂O₃ Pseudo-Binary and -Ternary Systems²

4.1. Abstract

Thermodynamic assessments of the pseudo-binary and -ternary systems formed by B₂O₃ with Na₂O, Al₂O₃, and SiO₂ were conducted according to the CALPHAD methodology. The compound energy formalism and two-sublattice partially ionic liquid models were used to thermodynamically represent the solid solutions malinkoite and mullite and the liquid phase of each system, respectively. A comprehensive literature review of available phase equilibria and thermodynamic experimental data as well as a detailed discussion of the modeling approaches implemented to optimize each system is provided. Assessment results are then presented and discussed, and the future path forward is outlined. The addition of B₂O₃ to the Na₂O-Al₂O₃-SiO₂ system contributes to the development of a thermodynamic database that will ultimately predict the equilibrium behavior of nepheline formation in high-level radioactive waste glass.

² Utlak S. A., Besmann T. M., Thermodynamic Assessment of the Na₂O-Al₂O₃-SiO₂-B₂O₃ Pseudo-Binary and -Ternary Systems. *J. Chem. Thermodyn.* 2019;130:251-268. Reprinted here with permission of publisher.

4.2. Introduction

The thermodynamic assessments conducted in this work are a continuation of the development of a high-level radioactive waste (HLW) glass thermodynamic database with the ultimate goal of characterizing the equilibrium behavior of nepheline and related phases in a multicomponent oxide HLW glass system. Construction of this database was initiated with the publication of Utlak & Besmann¹⁴⁸ that presented a successful thermodynamic assessment of the nepheline-forming Na₂O-Al₂O₃-SiO₂ pseudo-ternary system. As summarized by Lambotte & Chartrand,⁷⁶ nepheline refers to the sodium endmember of the mineral nepheline, NaAlSiO₄, which is a tectosilicate mineral from the feldspathoid family.¹⁴⁹ A derivative of SiO₂(high-tridymite),¹⁵⁰ the stable nepheline crystalline structure has a P6₃ space group and consists of 8 NaAlSiO₄ per unit cell.^{76, 151} As has been noted,¹ HLW glass with high mass fractions of Na₂O and Al₂O₃ can precipitate nepheline, which acts to remove the glass-former SiO₂ and glass-modifier Al₂O₃ from the host matrix consequently causing severe deterioration of glass durability. An accurate HLW glass thermodynamic database will be capable of predicting the equilibrium nepheline formation compositional region for HLW glass and thus will enable facilities such as the Hanford Tank Waste Treatment and Immobilization Plant to target HLW glass compositions that both optimize waste loading and avoid nepheline formation.

According to studies,^{1, 4, 5, 8, 14-25} Li₂O, K₂O, Fe₂O₃, B₂O₃, CaO, and MgO are HLW glass oxides that can go into solution and thus influence the precipitation of nepheline. For instance, studies conducted by Li et al.^{8, 24} experimentally observed that the influence of glass oxide components on increasing nepheline precipitation could be ranked as Al₂O₃ > Na₂O > Li₂O \approx K₂O \approx Fe₂O₃ > B₂O₃ > CaO > SiO₂ and that glass liquidus temperatures

were increased by oxides in the order of $Al_2O_3 > Na_2O > K_2O > CaO$ and decreased in the order of $B_2O_3 > SiO_2 > Li_2O$. Fe₂O₃ was determined to have minimal effect on glass liquidus temperatures.²⁴ Vienna et al.⁴⁷ conducted a literature review of available canistercenterline cooled HLW glass compositional data and reported the oxide compositional range of 657 HLW glass samples fabricated for experimental analysis. When neglecting five extreme glass compositions, the maximum B₂O₃ and Al₂O₃ mole fractions were approximately equal at of 9.38% and 9.39%, respectively, while the other previously listed nepheline solutes were 8 mol% or less. In progressing the thermochemical database, it was thus seen that boron plays an important role warranting attention in the next phase of the effort with the addition of B₂O₃ to the assessed Na₂O-Al₂O₃-SiO₂ pseudo-ternary system.¹⁴⁸ Thus, assessments of the pseudo-binary and -ternary systems formed from B₂O₃ with Na₂O, Al₂O₃, and SiO₂ were addressed.

Thermodynamic assessments of the Na₂O-B₂O₃, B₂O₃-Al₂O₃, B₂O₃-SiO₂, Na₂O-B₂O₃-SiO₂, Na₂O-B₂O₃-Al₂O₃, and Al₂O₃-B₂O₃-SiO₂ systems were conducted according to the calculation of phase diagrams (CALPHAD) methodology²⁶ using the two-sublattice partially ionic liquid (TSPIL) model^{42, 152} and compound energy formalism (CEF)^{12, 41, 153-156} to characterize the equilibrium behavior of the solid solutions and liquid phase, respectively. Model optimizations were conducted utilizing the OptiSage module of the FactSage software.

- 4.3. Literature review of experimental data
- 4.3.1. Na₂O-B₂O₃ pseudo-binary system

A reassessment of the Na₂O-B₂O₃ system was conducted to simplify the TSPIL model used in previous assessments¹⁵⁷⁻¹⁶² by excluding the $B_4O_7^{-2}$ species as discussed in

Section 4.4.4. Wang et al.¹⁵⁷ performed a comprehensive review of the phase equilibria and thermodynamic data as part of an assessment of the Na₂O-B₂O₃ system. Thus, this effort need not be repeated here but rather a summary is provided. Experimental efforts by Morey & Merwin,¹⁶³ Milman & Bouaziz,¹⁶⁴ and Liang et al.¹⁶⁵ indicated the formation of the following intermediate stoichiometric compounds for the Na₂O-B₂O₃ system: NaBO₂, NaB₃O₅, NaB₅O₈, NaB₉O₁₄, Na₂B₄O₇, Na₂B₈O₁₃, Na₃BO₃, and Na₄B₂O₅. The two polymorphs of NaBO₂ and three polymorphs of NaB₅O₈ as well as NaB₉O₁₄ are based on Milman & Bouaziz.¹⁶⁴ Liquidus data from these experimental studies were also included in this assessment.

Optimization of values for the phases in the Na₂O-B₂O₃ system utilized enthalpy of mixing data reported by Shartsis & Capps¹⁶⁶ at 298 K, Navrotsky et al.¹⁶⁷ at 974 K, and Fan¹³⁷ at 1299 K as well as the activity of B₂O₃ in liquid measured by Itoh et al.^{168, 169} at 1137 K and 1123 K. The measured activity of Na₂O in liquid reported by Park & Min¹⁷⁰ at 1373 K differed from that of Itoh et al.¹⁶⁹ with the latter's data showing consistency with multiple other studies.^{168, 171, 172} As such, the Itoh et al.¹⁶⁹ Na₂O in liquid activity data was adopted in this assessment. Relative partial molar free energies of Na₂O in liquid measured by Itoh et al.^{168, 169} at 1137 K and 1123 K, Stegmaier & Dietzel¹⁷¹ at 1123 K, and Sato et al.¹⁷² at 1123 K all referred to $0.05 \text{ Na}_2\text{O} + 0.95 \text{ B}_2\text{O}_3$ were the final data sets used to assess the Na₂O-B₂O₃ system.

4.3.2. B₂O₃-Al₂O₃ pseudo-binary system

The B₂O₃-Al₂O₃ system has previously been assessed by Decterov et al.¹⁷³ using the Modified Quasichemical Model (MQM)^{174, 175} and, as such, will be used as the basis for the reassessment of the system using the TSPIL model. The same intermediate

stoichiometric compounds, Al₁₈B₄O₃₃ and Al₄B₂O₉, chosen by Decterov et al.¹⁷³ based on Baumann & Moore,¹⁷⁶ Scholze,¹⁷⁷ Kim & Hummel,¹⁷⁸ Gielisse,¹⁷⁹ Gielisse & Foster,¹⁸⁰ Rymon-Lipinski,¹⁸¹ and Mazza et al.¹⁸² were included in this assessment. The melting temperatures selected by Decterov et al.¹⁷³ for Al₁₈B₄O₃₃ and Al₄B₂O₉ of 2223 K¹⁷⁶ and 1463 K,¹⁸¹ respectively, were retained in the current assessment.

Liquidus measurements reported by Gielisse & Foster¹⁸⁰ were used to optimize the TSPIL model while the data reported by Narushima et al. as cited by Decterov et al.¹⁷³ was neglected as this data is listed as a private communication and thus could not be adequately reviewed.

4.3.3. B2O3-SiO2 pseudo-binary system

A reassessment of the B₂O₃-SiO₂ system was conducted with the TSPIL model as the previous assessment completed by Decterov et al.¹⁷³ used the MQM. Decterov et al.¹⁷³ optimized the B₂O₃-SiO₂ system with liquidus data from Rockett & Foster,¹⁸³ Pichavant,¹⁸⁴ and Charles & Wagstaff¹⁸⁵ as well as enthalpy of mixing and activity data. As explained in Section 4.4.4.1, the B₂O₃-SiO₂ system could not be isolated for assessment using the currently implemented TSPIL model. However, the B₂O₃-SiO₂ phase equilibria data was included as part of the Na₂O-B₂O₃-SiO₂ and Al₂O₃-B₂O₃-SiO₂ assessments. B₂O₃-SiO₂ thermodynamic data was neglected as this data could not be optimized to with ternary interaction parameters that included either a Na₂O or Al₂O₃ species as discussed in Section 4.4.4.1.

4.3.4. Na₂O-B₂O₃-SiO₂ pseudo-ternary system

Liquidus and invariant point measurements reported by Morey¹⁸⁶ for the Na₂O-B₂O₃-SiO₂ system served as the main data source for optimization of phase equilibria

behavior. After synthesizing samples across the Na₂O-B₂O₃-SiO₂ compositional space, Morey¹⁸⁶ heated, quenched, crushed, and then examined the powdered samples with a petrographic microscope. Results of this analysis indicated phase relations and liquidus/invariant point temperatures for the pseudo-ternary system. Phase equilibria data generated by Ghanbari-Ahari & Cameron¹⁸⁷ as well as Rockett & Foster¹⁸⁸ for the isopleths Na₂B₄O₇-SiO₂ and Na₂B₈O₁₃-SiO₂, respectively, were also used in assessing the Na₂O-B₂O₃-SiO₂ system.

Morey¹⁸⁶ and Ghanbari-Ahari & Cameron¹⁸⁷ reported synthesizing the pseudoternary compound malinkoite, Na₂O.B₂O₃.2SiO₂ or NaBSiO₄, with acknowledged difficulty, but neither could determine with confidence the compositional formation region of the phase. Morey¹⁸⁶ reported four liquidus composition measurements with malinkoite as a primary phase while Ghanbari-Ahari & Cameron¹⁸⁷ synthesized malinkoite at one of the compositions reported by Morey¹⁸⁶ reaffirming the melting temperature of the phase at that composition. Thus, the malinkoite CEF model developed in this work utilizes the four liquidus measurements with malinkoite as the primary phase reported by Morey.¹⁸⁶

Thermodynamic data available for use in the optimization were partial molar free energies of Na₂O in the melt at 1200 K referred to Na₂O + 2B₂O₃ reported by Asai & Yokokawa¹⁸⁹ as well as at 1223 K referred to pure Na₂O as measured by Konakov et al.¹⁹⁰ The partial molar free energies of Na₂O in liquid at 1300 K referred to Na₂O + 2B₂O₃ reported by Kozhina & Shultz¹⁹¹ have been neglected due to a labeling conflict in their Fig. 2.c. The figure caption indicates that the mole fraction of B₂O₃ is held constant at 40 and 60% yet the figure abscissa shows a variable B₂O₃ mole fraction. Interpretation of the figure intention is not necessary as data from Asai & Yokokawa¹⁸⁹ is superimposed

showing good agreement between data sets and, consequently, it is only necessary to include data from Asai & Yokokawa.¹⁸⁹

4.3.5. Na₂O-B₂O₃-Al₂O₃ pseudo-ternary system

Binev et al.¹⁹² determined liquidus temperatures and phase crystallization regions for the Na₂O-B₂O₃-Al₂O₃ system in the composition space 20 – 55 mol% Na₂O, 0 – 35 mol% Al₂O₃, and 25 – 55 mol% B₂O₃. They also identified a Na₂Al₂B₂O₇ phase while failing to detect the double borate NaAlB₂O₅ phase described by Abdullaev et al.¹⁹³ Na₂Al₂B₂O₇ was also observed by Peshev et al.,¹⁹⁴ He et al.,¹⁹⁵⁻¹⁹⁷ Perras & Bryce,¹⁹⁸ Meng et al.,¹⁹⁹ and Salman et al.²⁰⁰ and, thus, has been included in the optimization of the Na₂O-B₂O₃-Al₂O₃ system. Additional liquidus measurements conducted by Wakasugi et al.^{201,} ²⁰² as well as NaBO₂-Al₂O₃ isopleth data reported by Peshev et al.¹⁹⁴ that included a 1119 K NaBO₂-Na₂Al₂B₂O₇ eutectic and 1259 K Na₂Al₂B₂O₇-Al₂O₃ peritectic point were considered. The 1259 K Na₂Al₂B₂O₇-Al₂O₃ peritectic is equivalent to the 1259 K melting temperature of Na₂Al₂B₂O₇ reported by He et al.¹⁹⁵ and consequently was adopted as the Na₂Al₂B₂O₇ melting point.

4.3.6. Al₂O₃-B₂O₃-SiO₂ pseudo-ternary system

The Al₂O₃-B₂O₃-SiO₂ system was reassessed with the TSPIL model as the previous assessment conducted by Swamy et al.⁸⁸ utilized the MQM. A comprehensive literature review of available phase equilibria data for the pseudo-ternary Al₂O₃-B₂O₃-SiO₂ system was documented by Swamy et al.,⁸⁸ which discussed liquidus data measured by Dietzel & Scholze²⁰³ as well as Gielisse¹⁷⁹ in the high SiO₂-low Al₂O₃ and high B₂O₃-low SiO₂ composition regions, respectively. Additionally, Gielisse,¹⁷⁹ Mazza et al.,¹⁸² and multiple other studies as cited by Swamy et al.⁸⁸ have concluded that B₂O₃ is soluble in multic. A

mullite-Al₁₈B₄O₃₃ phase boundary was indicated by Gielisse to exist at ~15 wt% SiO₂ over a range of 30 - 100 wt% B₂O₃, which was adopted as the phase boundary location by Swamy et al.⁸⁸ as well as in this assessment.

4.4. Thermodynamic modeling and optimization

The following sections summarize the CEF and TSPIL modeling approaches as well as discuss modeling and optimization of the stoichiometric compounds, solid solutions, and liquid phase in the assessed pseudo-binary and -ternary systems of B₂O₃ with Na₂O, Al₂O₃, and SiO₂.

4.4.1. CEF and TSPIL models

The CEF and TSPIL models were implemented through the FactSage software to optimize the solid solutions and liquid phase. Utlak & Besmann¹⁴⁸ provided a detailed review of the models, and readers may also consult the primary source publications for the CEF^{12, 41, 153-156} and TSPIL^{42, 152} models. As such, only a brief summary of the modeling approaches will herein be given.

The CEF is a sublattice-based model that can account for the non-stoichiometry of a substitutional solution based on lattice site occupancies, which can include vacancies. A CEF three sublattice structure could have the form:

$(A,B)_k(D,E,F)_l(G)_m$

where A, B, D, E, and G represent solid solution constituents, and the subscripts k, l, and m the sublattice stoichiometric coefficients. Definition of the Gibbs energy function can be found in Hillert.⁴¹

As stated in Utlak & Besmann,¹⁴⁸ the TSPIL model is based on the concept that in ionic phases each atom bears a charge and thus are surrounded by unlike atoms resulting

in chemical ordering. This ordering can be treated as two sublattices, one containing only cations and the other anions, vacancies, and neutral species:

$$(C_{i}^{+\nu_{i}})_{P}(A_{j}^{-\nu_{j}}, Va, B_{k}^{0})_{Q}$$

where *C*, *A*, *Va*, and *B* denote cations, anions, vacancies, and neutral species, respectively, while the indices i, j, and k represent specific sublattice constituents. The superscripts $+v_i$ and $-v_j$ represent the charge of the ith or jth cation or anion, respectively, while 0 indicates a neutral species. Electroneutrality is maintained by allowing the stoichiometric coefficients (P and Q) to vary as a function of site fractions. The TSPIL model Gibbs energy function is discussed in Utlak & Besmann as well.¹⁴⁸

Of final note, both CEF and TSPIL approaches incorporate excess Gibbs energy terms that contain interaction parameters often expressed as a Redlich-Kister (RK) power series expansion in terms of site fractions. As an example, a binary interaction between the A and B species on the first sublattice of a three sublattice CEF model can be described by

$$L_{A,B:D:G} = \sum_{k=0}^{n} {}^{k} L_{A,B:D:G} (y_{A} - y_{B})^{k}$$
(4.1)

where y represents the site fraction of the subscripted sublattice constituent and k the order of the expansion. The L term on the right-hand side of eq. (4.1) can be expressed as a polynomial that varies as a function of temperature with the form:

$${}^{k}L_{A,B:D:G} = A + B \cdot T + C \cdot T \ln(T) + D \cdot T^{2} + E \cdot T^{3} + F \cdot T^{-1}$$
(4.2)

where T is the temperature in kelvin and the variables A, B, C, D, E, and F are coefficients that can be empirically determined by optimizing the model Gibbs energy function to thermochemical or phase equilibria data. In practice, only the A and B coefficients of eq.

(4.2) are generally included in an assessment unless experimental data can justify the assignment of an empirically derived value to an additional coefficient.²⁶

4.4.2. Stoichiometric compounds

44 stoichiometric compounds were required to assess the Na₂O-Al₂O₃-SiO₂-B₂O₃ pseudo-binary and -ternary systems (Table 4.1). The Gibbs energy functions assigned to 29 of the 44 compounds were adopted from referenced sources (Table 4.1) whereas the remaining 15 were to some extent optimized in this work. Compound thermodynamic values sourced from Bale et al.⁴³ were obtained from the FTOxid FactSage⁴³ database.

4.4.2.1. Optimization of select stoichiometric compounds

The standard formation enthalpy and standard entropy of NaBO₂(β), NaB₅O₈(β), NaB₅O₈(γ), NaB₉O₁₄(β), and NaB₉O₁₄(γ) were derived in this work as these polymorphs were not reported (Table 4.1). Values were obtained by optimizing the standard formation enthalpy and standard entropy of these compounds to the phase equilibria reported by Liang et al.¹⁶⁵ Additionally, the standard enthalpy of formation of NaBO₂(α), NaB₃O₅(s), NaB₅O₈(α), NaB₉O₁₄(α), Na₂B₄O₇(s), Na₂B₈O₁₃(s), and Na₃BO₃(s) as well as Al₁₈B₄O₃₃ and Al₄B₂O₉ that formed in the Al₂O₃-B₂O₃ pseudo-binary system were minimally adjusted from the values contained in the FactSage FTOxid database to best fit melting temperatures.

The final compound included in the Na₂O-Al₂O₃-SiO₂-B₂O₃ assessed database was the Na₂Al₂B₂O₇(s) phase that has been observed. It was necessary to derive all terms of the Gibbs energy function for the phase as it had not previously been considered. Thus, the heat capacity as a function of temperature was approximated by the Neumann-Kopp rule²⁰⁴ where the heat capacities of Na₂O(α), B₂O₃(s), and Al₂O₃(corundum) were summed. The

Na₂Al₂B₂O₇(s) standard entropy was initially estimated via Latimer's method²⁰⁵ with updated entropic contribution values of species as summarized by Spencer.⁶⁴ The standard formation enthalpy and standard entropy were then optimized using phase equilibria reported by Binev et al.,¹⁹² Peshev et al.,¹⁹⁴ and He et al.¹⁹⁵ with the resulting values listed in Table 4.1.

4.4.3. Solid solutions

The three solid solutions malinkoite, β -Al₂O₃, and mullite were incorporated into the Na₂O-B₂O₃-SiO₂, Na₂O-B₂O₃-Al₂O₃, and Al₂O₃-B₂O₃-SiO₂ assessments, respectively, with malinkoite and mullite requiring optimization as part of conducting the assessments. 4.4.3.1. Malinkoite

The malinkoite phase was modeled using the same approach as applied to the nepheline phase that was optimized as part of the Na₂O-Al₂O₃-SiO₂ pseudo-ternary assessment conducted by Utlak & Besmann.¹⁴⁸ Schneider et al.²⁰⁶ and McCloy et al.⁵ refer to the nepheline structure as a stuffed tridymite derivative composed of six-membered stacked ring layers, which form channels perpendicular to the layers that are filled with various cations. Layers adjacent to these rings along the c-axis create an eclipsed or *cis* structure in the case of tridymite and nepheline, whereas adjacent layers that are rotated 180° and shifted laterally generate a staggered or *trans* structure such as kalsilite and malinkoite.⁵ Thus, as the type and quantity of crystallographic lattice sites does not differ between malinkoite and nepheline, the three sublattice CEF model implemented by Utlak & Besmann¹⁴⁸ to thermodynamically characterize nepheline could also be applied to describe malinkoite. As such, the nepheline three sublattice CEF model implemented by Utlak & Besmann¹⁴⁸ was modified by replacing the (Na – Al)⁺⁴ species on the first

sublattice with a $(Na - B)^{+4}$ species, thus representing the substitution of an Al^{+3} cation with a B^{+3} cation:

$$((Na - B)^{+4}, (Va - Si)^{+4})_8^{\alpha} [Si^{+4}]_8 {O^{-2}}_{32}$$

4.4.3.1.1. Optimization of the malinkoite CEF model

An initial Gibbs energy function of the malinkoite endmember, Na₈B₈Si₈O₃₂, was generated by proportionally summing the values for Na₂O(α), B₂O₃(s), and SiO₂(highcristobalite) (Table 4.1). The enthalpy of formation of the malinkoite endmember was then derived by optimizing the malinkoite CEF model with liquidus data reported by Morey¹⁸⁶ such that the malinkoite phase formation boundary in the pseudo-ternary Na₂O-B₂O₃-SiO₂ was in agreement with the liquidus measurements as addressed in Section 4.5.4. Eq. (3) defines the CEF model molar Gibbs energy expression used to characterize the malinkoite equilibrium behavior with parameter values listed in Table 4.2, where *R* is the ideal gas law constant.

$$G_{\rm m}^{\rm malinkoite} = y_{\rm NaB^{+4}}^{\alpha} {}^{\rm o} G_{\rm Na_8B_8Si_8O_{32}} + y_{\rm VaSi^{+4}}^{\alpha} {}^{\rm o} G_{\rm Si_{16}O_{32}}$$

$$+ 8RT (y_{\rm NaB^{+4}}^{\alpha} \ln y_{\rm NaB^{+4}}^{\alpha} + y_{\rm VaSi^{+4}}^{\alpha} \ln y_{\rm VaSi^{+4}}^{\alpha})$$

$$(4.3)$$

4.4.3.2.β-Al₂O₃

The CEF β -Al₂O₃ model of Utlak & Besmann¹⁴⁸ was retained in this work (Table 4.2). This three sublattice model was not modified to incorporate B₂O₃ on the second sublattice to substitute with Al₂O₃ as it is known that the two hypothetical endmembers that would have resulted from this sublattice structure, Na₂B₂O₃₄ and Na₄B₂O₃₅, do not form at equilibrium in the Na₂O-B₂O₃ pseudo-binary system.¹⁶³⁻¹⁶⁵

4.4.3.3. Mullite

The mullite CEF model of Utlak & Besmann¹⁴⁸ was used as the initial model in this work. Similar to the approach applied by Swamy et al.,⁸⁸ a B^{+3} species was added to the second sublattice to substitute for Al^{+3} :

$$(Al^{+3})_{2}[Al^{+3},B^{+3}Si^{+4}]_{1}^{\alpha}\{O^{-2},Va\}_{5}^{\beta}$$

yielding the two new endmembers Al₂BO₅ and Al₂B.

4.4.3.3.1. Optimization of the mullite CEF model

The mullite CEF model was optimized along with the oxide liquid TSPIL model as part of the Al₂O₃-B₂O₃-SiO₂ pseudo-ternary system assessment. An excess enthalpy and entropy value in the form of one zeroth-order RK parameter interacting the B⁺³ and Si⁺⁴ species on the second sublattice with Al⁺³ and O⁻² on the first and third sublattices, respectively, were introduced to obtain a mullite-Al₁₈B₄O₃₃ phase boundary at 15 wt% SiO₂ over the range of approximately 30 – 100 wt% B₂O₃. The resulting molar Gibbs energy relation for the mullite phase is expressed in eq. (4.4) with values listed in Table 4.2:

$$G_{\rm m}^{\rm mullite} = y_{\rm Al^{+3}}^{\alpha} y_{\rm O^{-2}}^{\beta} {}^{\rm o} G_{\rm Al_3O_5^{-1}}$$

$$+ y_{\rm Al^{+3}}^{\alpha} y_{\rm Va}^{\beta} {}^{\rm o} G_{\rm Al_3^{+9}} + y_{\rm B^{+3}}^{\alpha} y_{\rm O^{-2}}^{\beta} {}^{\rm o} G_{\rm Al_2BO_5} + y_{\rm B^{+3}}^{\alpha} y_{\rm Va}^{\beta} {}^{\rm o} G_{\rm Al_2B^{+9}}$$

$$+ y_{\rm Si^{+4}}^{\alpha} y_{\rm O^{-2}}^{\beta} {}^{\rm o} G_{\rm Al_2SiO_5} + y_{\rm Si^{+4}}^{\alpha} y_{\rm Va}^{\beta} {}^{\rm o} G_{\rm Al_2Si^{+10}}$$

$$+ RT \left(y_{\rm Al^{+3}}^{\alpha} \ln y_{\rm Al^{+3}}^{\alpha} + y_{\rm B^{+3}}^{\alpha} \ln y_{\rm B^{+3}}^{\alpha} + y_{\rm Si^{+4}}^{\alpha} \ln y_{\rm Si^{+4}}^{\alpha} + 5y_{\rm O^{-2}}^{\beta} \ln y_{\rm O^{-2}}^{\beta} \right)$$

$$+ 5y_{\rm Va}^{\beta} \ln y_{\rm Va}^{\beta} + y_{\rm Al^{+3}}^{\alpha} y_{\rm Si^{+4}}^{\alpha} y_{\rm O^{-2}}^{\beta} {}^{\rm o} L_{\rm Al^{+3}:Al^{+3},Si^{+4}:O^{-2}}$$

$$+ y_{\rm Al^{+3}}^{\alpha} y_{\rm Si^{+4}}^{\alpha} y_{\rm Va}^{\beta} {}^{\rm o} L_{\rm Al^{+3}:Al^{+3},Si^{+4}:Va} + y_{\rm B^{+3}}^{\alpha} y_{\rm Si^{+4}}^{\alpha} y_{\rm O^{-2}}^{\beta} {}^{\rm o} L_{\rm Al^{+3}:B^{+3},Si^{+4}:Va}$$

4.4.4. Oxide liquid

The TSPIL model implemented in this work to assess the pseudo-binary and -ternary systems of B₂O₃ with Na₂O, Al₂O₃, and SiO₂ follows that of Utlak & Besmann:¹⁴⁸ $(Al^{+3},Na^{+1})_{p}(AlO_{2}^{-1},O^{-2},SiO_{4}^{-4},SiO_{2}^{0})_{Q}$

Thus, it was only required to introduce B₂O₃ species into the liquid sublattice model. Towards this effort, the approach initially developed by Yu et al.¹⁶⁰ to assess the Li₂O-B₂O₃ system and then subsequently applied by Yu et al.^{158, 159, 207} as well as Wang et al.¹⁵⁷ to assess the BaO-B₂O₃,¹⁵⁹ Li₂O-BaO-B₂O₃,¹⁹⁰ CaO-B₂O₃,¹⁵⁸ and Na₂O-B₂O₃¹⁵⁷ systems was generally adopted in this work, which was to add the BO^{-3} , $B_4O_7^{-2}$, and $B_3O_{4.5}$ species to the second sublattice of the TSPIL model. A detailed explanation of the basis for this modeling approach is presented in Yu et al.¹⁶⁰ In brief, glassy B₂O₃ consists of BO₃ groups, hence the inclusion of the BO_3^{-3} species, and vitreous B_2O_3 has been observed to form randomly oriented boroxal rings with a stoichiometry of B₃O_{4.5}, which is captured by the inclusion of the neutral B₃O_{4.5} species.¹⁶⁰ Yu et al.¹⁶⁰ also discussed the basis for the inclusion of the $B_4O_7^{-2}$ species but ultimately concluded that the reasoning was not well supported and the selection of this species was arbitrary. It was determined during the optimizations conducted in this work that the $B_4O_7^{-2}$ species minimally affected the equilibrium behavior of any system containing B2O3 and that the same result could be obtained without including B4O7⁻². Hence, the TSPIL model used to assess the Na₂O-Al₂O₃-SiO₂-B₂O₃ pseudo-binary and -ternary systems was:

 $(Al^{+3}, Na^{+1})_{p}(AlO_{2}^{-1}, O^{-2}, SiO_{4}^{-4}, BO_{3}^{-3}, B_{3}O_{4.5}^{0}, SiO_{2}^{0})_{O}$

4.4.4.1. Optimization of oxide liquid TSPIL model

As listed in Table 4.3, the TSPIL model endmembers Al₃B₃O₉, NaAlO₂, Na4SiO₄, and Na₃BO₃ as well as 54 RK parameters were optimized to the phase equilibria and thermodynamic experimental data discussed in Section 4.3 to complete assessments of the Na₂O-Al₂O₃-SiO₂-B₂O₃ pseudo-binary and -ternary systems. Endmembers and parameters for solely Na₂O, Al₂O₃, and/or SiO₂ species are from Utlak & Besmann¹⁴⁸ whereas those with B₂O₃ species were generated in this work. The zeroth- and first-order quaternary reciprocal parameters comprised of Al⁺³, Na⁺¹, AlO₂⁻¹, and BO₃⁻³ were needed to suppress a nonphysical miscibility gap that tended to form along the NaBO₂-Al₂O₃ isopleth. ^b Units of all °*G* and *L* parameters are (J/mol)⁻¹

As the TSPIL sublattice structure used in this work contains all B₂O₃ and SiO₂ species on the second sublattice, the model could not be optimized to the B₂O₃-SiO₂ system. However, the phase equilibria data of the B₂O₃-SiO₂ system as discussed in Section 4.3.3 was incorporated into assessments of both the Na₂O-B₂O₃-SiO₂ and Al₂O₃-B₂O₃-SiO₂ systems, which enabled B₂O₃-SiO₂ phase diagrams to be generated assuming negligible mole fractions of Na₂O and Al₂O₃. The ternary RK parameters used to assess the Na₂O-B₂O₃-SiO₂ and Al₂O₃-B₂O₃-SiO₂ systems were required to include either a Na⁺¹ or Al⁺³ species along with B₂O₃ and SiO₂ species, which prevented good optimizations from being obtained to B₂O₃-SiO₂ pseudo-binary thermodynamic data. Thus, enthalpy of mixing and activity measurements for the B₂O₃-SiO₂ system were not included in the assessments that contained this pseudo-binary system. The minimal effect of neglecting this data is discussed in Section 4.5.3.

The molar Gibbs energy of the oxide liquid in the TSPIL sublattice formalism is provided by Eq. (4.5) with parameter values listed in Table 4.3.

$$\begin{split} \mathcal{G}_{m}^{liquid} &= y_{Al^{3+}} y_{Al02^{-1}} {}^{0} \mathcal{G}_{Al_{4}} {}^{0}_{6} + y_{Al^{+3}} y_{O^{-2}} {}^{0} \mathcal{G}_{Al_{2}} {}^{0}_{0} + y_{Al^{+1}} y_{Sl07^{+2}} {}^{0} \mathcal{G}_{Al_{4}} {}^{0}_{Sl07^{+2}} {}^{0} \mathcal{G}_{Al_{4}} {}^{0} \mathcal{G}_{Al_{4}} {}^{0} \mathcal{G}_{Al_{4}} {}^{0} \mathcal{G}_{Al_{4}} {}^{0} \mathcal{G}_{Al_{4}} {}^{0} \mathcal{G}_{$$

As remarked by footnote a of Table 4.3, Eq. (4.5) only accounts for model parameters that contain a B₂O₃ species. The complete TSPIL model equation also includes model parameters consisting of only Na₂O, Al₂O₃, and/or SiO₂ species, which were reported in Utlak Besmann [1].

4.5. Results and discussion

4.5.1. Na₂O-B₂O₃ pseudo-binary system

All liquidus, melting, and invariant point temperatures and compositions reported by Morey & Merwin,¹⁶³ Milman & Bouaziz,¹⁶⁴ and Liang et al.¹⁶⁵ as well as polymorph transition temperatures of the phases NaBO₂, NaB₅O₈, and NaB₉O₁₄ measured by Liang et al.¹⁶⁵ are generally well fit by the optimized models (Fig. 4.1 and Table 4.4) where the notation X_{oxide} , e.g., $X_{\text{B}_2\text{O}_3}$, indicates the molar amount of the specified oxide.

The two eutectic points sharing the Na₂B₄O₇ phase were optimized as well as the selected model parameters would allow, and a compromise was made between the Na₂B₈O₁₃ melting point and adjacent liquidus data. The discrepancies arising from this compromise are relatively minor and did not prevent good representations of pseudo-ternary systems containing Na₂O-B₂O₃ from being obtained. As noted for Na₂O-B₂O₃ by Wang et al.,¹⁵⁷ melt viscosity and volatility of B₂O₃ increase as B₂O₃ content increases, which may increase the uncertainty in liquidus measurements at a high B₂O₃ mole fraction. For instance, Morey & Merwin¹⁶³ were unable to crystallize B₂O₃ from the melt at B₂O₃ >80 mol% resulting in the conclusion that the lower portion of the Na₂B₈O₁₃ liquidus curve may be metastable. Thus, the overprediction of liquidus temperatures in this region both in the calculated diagram of Wang et al.¹⁵⁷ as well in this work (Fig. 4.1) is accepted due to the uncertainty in the high B₂O₃ mole fraction liquidus measurements.

TSPIL model calculations agreed well with the enthalpy of mixing, activity of B₂O₃ in the liquid, and partial free energy of Na₂O in the liquid data (Fig. 4.2-Fig. 4.4). Thus, the good fit of model calculations to thermodynamic and phase equilibria data indicates that an accurate assessment of the Na₂O-B₂O₃ system has been obtained.

4.5.2. B₂O₃-Al₂O₃ pseudo-binary system

As discussed in Section 4.3.2, the main source of experimental data to optimize the B₂O₃-Al₂O₃ system was phase equilibria data generated by Gielisse & Foster¹⁸⁰ as well as a series of melting temperatures for the intermediate stoichiometric compounds Al₁₈B₄O₃₃ and Al₄B₂O₉, which were ultimately assigned as 2223 K and 1463 K, respectively. The TSPIL model and standard formation enthalpies of the Al₁₈B₄O₃₃ and Al₄B₂O₉ compounds were accurately fit to this data as evidenced by the computed phase diagram (Fig. 4.5) as well as the calculated to measured data comparison displayed in Table A.1 indicating that the B₂O₃-Al₂O₃ systems was successfully assessed.

4.5.3. B₂O₃-SiO₂ pseudo-binary system

As addressed in Section 4.4.4.1, the B₂O₃-SiO₂ pseudo-binary system could not be explicitly assessed due to the B₂O₃ and SiO₂ TSPIL model species all residing on the second sublattice. However, the B₂O₃-SiO₂ phase equilibria data as reviewed in Section 4.3.3 was incorporated into both the Na₂O-B₂O₃-SiO₂ and Al₂O₃-B₂O₃-SiO₂ assessments. A B₂O₃-SiO₂ phase diagram was then able to be generated within both pseudo-ternary systems by setting the mole fractions of Na₂O and Al₂O₃ to a minimal value, 10⁻⁵ mol% (Fig. 4.6 & Fig. 4.7). Upon inspection of Fig. 4.6 & Fig. 4.7, the B₂O₃-SiO₂ phase equilibria measurements, which includes metastable miscibility gap data that corresponds to the calculated miscibility gaps represented as a dotted line in each figure, are well predicted

by the TSPIL model. While an ideal optimization would have also included the available thermodynamic measurements such as activity and enthalpy of mixing data, the ternary RK parameters used in the pseudo-ternary system assessments would not optimize to this type of data in a sufficiently accurate manner likely because of the mandatory inclusion of a Na₂O or Al₂O₃ TSPIL model cation sublattice species in the parameters that did not exist in the physical data. Regardless, a good representation of the phase equilibria data indicates that the models are consistent with thermodynamic data. Thus, it is considered that obtaining an accurate optimization of the B₂O₃-SiO₂ phase equilibria data within the successful Na₂O-B₂O₃-SiO₂ and Al₂O₃-SiO₂ system assessments is sufficient.

4.5.4. Na₂O-B₂O₃-SiO₂ pseudo-ternary system

Fig. 4.8 displays the Na₂O-B₂O₃-SiO₂ calculated liquidus projection generated from the optimization of this system superimposed with liquidus/phase relations and invariant point data measured by Morey¹⁸⁶ as well as invariant points reported by Ghanbari-Ahari & Cameron.¹⁸⁷ The phase relations of Morey¹⁸⁶ are well represented in Fig. 4.8. The agreement of the TSPIL model calculations to data measurements of Ghanbari-Ahari & Cameron will be analyzed later in this section. The NaB₃O₅ phase is reported to exist in the region approaching 100 mol% B₂O₃, however Na₂B₈O₁₃ + SiO₂(quartz) liquidus measurements also were reported in this region. The model was optimized so that the Na₂B₈O₁₃ phase approximately formed at the Na₂B₈O₁₃ + SiO₂(quartz) points represented by the left half-filled circles. Morey did not identify the NaB₅O₈ and NaB₉O₁₄ phases and thus did not report liquidus data for these compounds. However, these phases are known to form in the Na₂O-B₂O₃¹⁶³⁻¹⁶⁵ system and consequently have been included in the Na₂O-B₂O₃-SiO₂ liquidus projection diagram (Fig. 4.8).

Concerning the malinkoite phase formation region in Fig. 4.8, Morey¹⁸⁶ did not explicitly define the phase boundary. However, as discussed in Section 4.4.3.3.1, the four liquidus measurements with malinkoite as the primary phase reported by Morey¹⁸⁶ were used as the guiding data for optimization of the malinkoite CEF model. The optimization to the data reported by Morey¹⁸⁶ effectively accounted for the malinkoite measurement of Ghanbari-Ahari & Cameron¹⁸⁷ as the composition of the sample was the same as a sample fabricated by Morey¹⁸⁶ and the temperatures were within 10 K. Thus, an optimization was obtained that resulted in the malinkoite phase boundary region aligning with three of the four Morey¹⁸⁶ liquidus measurements with the fourth residing in the phase formation region (Fig. 4.8). Additionally, the TSPIL model was refined to maximize the malinkoite melting temperature while retaining a reasonable phase region. The result is that the calculated liquidus temperatures are within 36 - 46 K of the four malinkoite liquidus temperatures reported by Morey¹⁸⁶ (Table 4.5). Additional increases in malinkoite region melting temperatures resulted in an expanded malinkoite liquidus compositional area and overall accuracy reduction of computed liquidus temperatures and compositions to the measurements of Morey.¹⁸⁶ While Morey¹⁸⁶ did not indicate an error limit associated with the malinkoite liquidus measurements, the one measurement conducted by Ghanbari-Ahari & Cameron¹⁸⁷ to synthesize malinkoite was reported with a confidence of ± 10 K. As both Morey¹⁸⁶ and Ghanbari-Ahari & Cameron¹⁸⁷ acknowledged difficulty in synthesizing malinkoite, it is not unreasonable to associate an approximate ± 10 K error with the four Morey¹⁸⁶ liquidus measurements herein being discussed. As these adjustments result in liquidus projections in agreement with the composition measurements of Morey,¹⁸⁶ and as

the calculated phase melting temperatures are within a reasonable range of the measured liquidus temperatures, the malinkoite phase is well-modeled.

Table 4.5 shows the calculated and measured temperatures for the 120 Fig. 4.8 liquidus data points. The differential between the Table 4.5 calculated and measured temperatures is 52 K or less for 79 of the data points and between 52 K and 134 K for an additional 30 data points, which indicates generally good agreement between TSPIL model calculations and measured data for a majority of the Fig. 4.8 liquidus points. One liquidus measurement at 2 mol% Na₂O, 16 mol% B₂O₃, and 82 mol% SiO₂ as well as five additional liquidus points between 68.5 – 82 mol% SiO₂ exceeded measured temperatures by 341 K and between 151 – 171 K, respectively. This overprediction was the result of maximizing the malinkoite melt while maintaining good agreement between calculated and measured liquidus compositions and melt temperatures of adjacent phases. However, the calculated liquidus temperatures in the SiO₂-containing regions for <68.5 mol% SiO₂ as well as along the B₂O₃-SiO₂ pseudo-binary axis (Fig. 4.6) agree well with measured temperatures. Thus, increasing the melt temperatures for certain compositions in the SiO₂-containing region to obtain reasonable malinkoite melt temperatures was considered acceptable.

According to Morey,¹⁸⁶ some of the reported invariant points may have been metastable, so while all invariant points were included in the initial assessment of the Na₂O-B₂O₃-SiO₂ system, not all of the measured points agreed with the assessed liquidus projection (Fig. 4.8). Those invariant points measured by Morey¹⁸⁶ as well as Ghanbari-Ahari & Cameron¹⁸⁷ that disagreed with Na₂O-B₂O₃-SiO₂ liquidus projections due to the introduction of the malinkoite phase have been labeled as such in Table 4.6. Each of the Table 4.6 invariant point compositions and temperatures, however, are well fit with the

exception of the NaBO₂-Na₂Si₂O₅-Na₂SiO₃ calculated composition and Na₂B₈O₁₃-SiO₂-NaB₃O₅ calculated liquidus temperature. The former calculated invariant point deviated from the measured composition due to the addition of the malinkoite phase and the latter was due to the elevation of liquidus temperatures caused by targeting malinkoite melting temperatures. The latter invariant point is reported with a 50 K differential between measurements of Morey¹⁸⁶ and Ghanbari-Ahari & Cameron¹⁸⁷ indicating the variability associated with this measurement. Additionally, the phases reported by Ghanbari-Ahari & Cameron¹⁸⁷ at >62 mol% Na₂O did not include all the known stable phases in the Na₂O-B₂O₃¹⁶³⁻¹⁶⁵ and Na₂O-SiO₂¹⁴⁸ systems such as Na₃BO₃ and Na₁₀SiO₇, which increases the concern with their data. Hence, the error generated in this region is considered of minimal consequence, and the Na₂O-B₂O₃-SiO₂ system representation is seen as well-representing behavior.

Na₂B₄O₇-SiO₂ and Na₂B₈O₁₃-SiO₂ phase equilibria data (Fig. 4.9 & Fig. 4.10) measured by Ghanbari-Ahari & Cameron¹⁸⁷ and Morey,¹⁸⁶ respectively, are adequately represented by model calculations. Preference was given to data reported by Morey¹⁸⁶ for the Na₂B₄O₇-SiO₂ isopleth, thus minor temperature differences exist between model calculations and experimental data measured by Ghanbari-Ahari & Cameron.¹⁸⁷ This region calculated by the TSPIL model, however, fits the data of Fig. 4.6 well indicating that a good optimization was obtained.

Finally, model calculations of the partial free energy of Na₂O in the oxide liquid at 1200 and 1223 K referred to Na₂O + $2B_2O_3$ as shown in Fig. 4.11 & Fig. 4.12, respectively, well predict the experimental data for the specified constant Na₂O mole fractions.

4.5.5. Na₂O-B₂O₃-Al₂O₃ pseudo-ternary system

The calculated stability regions for the Na₂B₂Al₂O₇ phase within the Na₂O-B₂O₃-Al₂O₃ liquidus projection diagram (Fig. Fig. 4.13) agree well with the results reported by Binev et al.¹⁹² Also, the calculated liquidus temperatures in Fig. Fig. 4.13 predict well the measured temperatures in Table 4.7. The NaBO₂-Al₂O₃ phase equilibria data generated by Peshev et al.¹⁹⁴ displayed in Fig. Fig. 4.14 are well reproduced by model calculations, including the NaBO₂-Na₂Al₂B₂O₇ eutectic and Na₂Al₂B₂O₇-β-Al₂O₃ peritectic compositions and temperatures (Table 4.4). While the NaBO₂(α) and NaAlO₂(γ) phases that share a boundary with the Na₂Al₂B₂O₇ compound are consistent with the experimental data of Binev et al.,¹⁹² the boundary along the approximately 30 mol% Al₂O₃ region is shared by the β -Al₂O₃ and A₁₈B₄O₃₃ phases as opposed to Al₂O₃ as indicated by Binev et al.¹⁹² It is stated in Binev et al.¹⁹² that Al₂O₃ crystallizes in this high B₂O₃ region, which is also true of the model (Fig. Fig. 4.13), but no mention is made of the additional phases β -Al₂O₃ and A₁₈B₄O₃₃. It is necessary to include these phases in the Na₂O-B₂O₃-Al₂O₃ system as each exists in the respective pseudo-binary systems Na₂O-Al₂O₃¹⁴⁸ and B₂O₃-Al₂O₃. As the optimization was able to accurately converge to the liquidus data reported by Binev et al.¹⁹² with the inclusion of β -Al₂O₃ and A₁₈B₄O₃₃ (Fig. Fig. 4.13 & Table 4.7), the model calculations and measured data in other ways do not conflict, particularly as Al₂O₃(corundum) does form in the general region identified by Binev et al.¹⁹² With no data

at >55 mol% B_2O_3 , the remainder of the phase equilibria are based on the extrapolated models.

4.5.6. Al₂O₃-B₂O₃-SiO₂ pseudo-ternary system

The result of the Al₂O₃-B₂O₃-SiO₂ assessment is shown in the Fig. Fig. 4.15 pseudo-ternary liquidus projection diagram with superimposed liquidus data reported by Gielisse¹⁷⁹ and Dietzel & Scholze.²⁰³ Table 4.8 indicates that all calculated temperatures differ by <49 K and 26 differ by <30 K of the measured values, which demonstrates good model to experimental data agreement. The Al₂O₃-B₂O₃-SiO₂ liquidus projection (Fig. 15) indicates that mullite forms at >15 wt.% SiO₂ while Al₁₈B₄O₃₃ exists at <15 wt.% SiO₂ over the approximate range of 30 – 100 wt.% B₂O₃, which agrees with the experimental phase equilibria determinations reported by Gielisse.¹⁷⁹

4.6. Conclusion

As part of the development of a HLW glass database that will predict the equilibrium behavior for understanding nepheline formation, the Na₂O-B₂O₃, B₂O₃-Al₂O₃, B₂O₃-SiO₂, Na₂O-B₂O₃-SiO₂, Na₂O-B₂O₃-Al₂O₃, and Al₂O₃-B₂O₃-SiO₂ systems were successfully assessed, reproducing nearly all the reliable phase equilibria and thermochemical information for these systems. A comprehensive literature review of available phase equilibria and thermodynamic data for each optimized pseudo-binary and -ternary system was documented as was the modeling approach implemented to complete each optimization. This assessment effort effectively added the HLW glass oxide constituent B₂O₃ to the Na₂O-Al₂O₃-SiO₂ thermodynamic database developed by Utlak & Besmann¹⁴⁸ completing the development of a consistent base waste glass constituent

thermochemical database. The complex solid solutions malinkoite and mullite containing sodium and boron were thermodynamically modeled as were their oxide melts.

To next address minor waste constituents and to characterize/predict their behavior with respect to nepheline and related phase formation, the solutes Li₂O, K₂O, Fe₂O₃, B₂O₃, CaO, and MgO will be included in the melt and appropriate crystalline phases of subsystems and eventually the entire Na₂O-Al₂O₃-SiO₂-B₂O₃ base glass composition to obtain a sufficiently comprehensive thermodynamic database. Assessment of the Na₂O-Al₂O₃-SiO₂-B₂O₃ pseudo-quaternary system will occur as part of the overall database optimization and benchmarking process to HLW glass data.

Acknowledgements

The authors gratefully acknowledge the financial support provided by the U.S. Department of Energy Waste Treatment and Immobilization Plant Project. The authors also thank Albert Kruger, Michael Schweiger, and Chuck Henager for their involvement with this research project.

Funding: This work was supported by the Department of Energy Office of River Protection

4.7. Tables

Table 4.1. Enthalpy, entropy, and heat capacity constant values of specified compounds

		AHaraway	S	$C_{\rm p}^{\rm a}$ constant	ts					
Compound	T range / K	$/(J \cdot mol^{-1})$	$/(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	а	b	С	d	е	f g	g Reference
B ₂ O ₃ (s)	298.15 < <i>T</i> 1191.56 1191.56 < <i>T</i> < 2000	-1271936	53.95	187.065717 127.77936	6.228488	7.1088789		-2319.648372		Barin ²⁰⁸
$B_2O_3(\ell)$	298.15 < T 723 723 < T < 2000	-1247862.13	87.2665	196.430432 129.704				-2426.975391	1.790887896	n
$Na_2O(\gamma)$	298 < T < 1405 1405 < T < 1500	-417982	75.061	66.216001 104.6	43.865102	-8.1337002	-14087.5			Wu et al. ⁸⁴
$Na_2O(\beta)$	298 < T < 1405 1405 < T < 1500	-416224.72	76.7788	66.216001 104.6	43.865102	-8.1337002	-14087.5			"
$Na_2O(\alpha)$	298 < T < 1405 1405 < T < 1500	-404300.32	86.372	66.216001 104.6	43.865102	-8.1337002	-14087.5			"
$Na_2O(\ell)$	298 < T < 1405 1405 < T < 1500	-356602.72	120.3205	66.216001 104.6	43.865102	-8.1337002	-14087.5			n
$NaBO_2(\beta)$	298.15 < <i>T</i> 1500	-976000	72.76	122.522934	14.551			-1052.705187		$\Delta H_{298.15\mathrm{K}}$ and $S_{298.15\mathrm{K}}$ this work, C_{p}^{208}
$NaBO_2(\alpha)$	298.15 < <i>T</i> 1500	-975228	73.5296	122.522934	14.551			-1052.705187		$\Delta H_{298.15\mathrm{K}}$ this work, ^b $S_{298.15\mathrm{K}}$ and C_{p}^{208}
NaB ₃ O ₅ (s)	298.15 < <i>T</i> 1500	-2301685	121.3537	321.462183	9.060921			-3505.054198		$\Delta H_{298.15\mathrm{K}}$ this work, ^b $S_{298.15\mathrm{K}}$ and C_{p}^{208}
$NaB_5O_8(\gamma)$	298.15 < T 1250.23 1250.23 < T <1900	-3605590	171.576	637.259757 608.578898	-39.58115 -42.695393	44.8621645 41.3077251		-8477.216221 -7317.392035		$\Delta H_{\rm 298.15K}$ and $S_{\rm 298.15K}$ this work, $C_{\rm p}^{\ 43}$
$NaB_5O_8(\beta)$	298.15 < <i>T</i> 1250.23 1250.23 < <i>T</i> <1900	-3603590	173.59	637.259757 608.578898	-39.58115 -42.695393	44.8621645 41.3077251	;	-8477.216221 -7317.392035		"
$NaB_5O_8(\alpha)$	298.15 < <i>T</i> 1250.23 1250.23 < <i>T</i> <1900	-3601590	175.507	637.259757 608.578898	-39.58115 -42.695393	44.8621645 41.3077251	;	-8477.216221 -7317.392035		$\Delta H_{298.15K}$ this work, ^b $S_{298.15K}$ and C_p^{43}
$NaB_9O_{14}(\gamma)$	298.15 < <i>T</i> 1250.23 1250.23 < <i>T</i> <1900	-6165000	281.091	1011.39119 867.986898	-27.124174 -42.695393	59.0799224 41.3077251	•	-13116.51296 -7317.392035		$\Delta H_{298.15\mathrm{K}}$ and $\mathcal{S}_{298.15\mathrm{K}}$ this work, $C_{\mathrm{p}}^{\ 43}$
$NaB_9O_{14}(\beta)$	298.15 < T 1250.23 1250.23 < T <1900	-6164000	282.763	1011.39119 867.986898	-27.124174 -42.695393	59.0799224 41.3077251		-13116.51296 -7317.392035		$\Delta H_{\rm 298.15K}$ and $S_{\rm 298.15K}$ this work, $C_{\rm p}^{\ 43}$
$NaB_9O_{14}(\alpha)$	298.15 < <i>T</i> 1250.23 1250.23 < <i>T</i> <1900	-6163410	283.407	1011.39119 867.986898	-27.124174 -42.695393	59.0799224 41.3077251	•	-13116.51296 -7317.392035		$\Delta H_{298.15K}$ this work, ^b $S_{298.15K}$ and C_p^{43}
$Na_2B_4O_7(s)$	298.15 < <i>T</i> 1300	-3286766.08	189.5168	400.90256	57.64206			-3997.569676		$\Delta H_{298.15K}$, $S_{298.15K}$ and $C_{\rm p}^{208}$

		AH-	Same	$C_{\rm p}^{\rm a}$ constants	;						
Compound	T range / K	$/ (J \cdot mol^{-1})$	$/ (\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	a	b	С	d	е	f g		Reference
Na2B8O13(s)	298.15 < <i>T</i> 1900	-5911384	297.255	1087.453797	-85.390787	82.6154501		-14634.78407			$\Delta H_{298.15K}$ this work, ^b $S_{298.15K}$ and C_p^{43}
Na ₃ BO ₃ (s)	298.15 < <i>T</i> 1400	-1503650	148.5906	188.738935	58.416103	-8.1337002	-14087.5	-1052.705187			$\Delta H_{298.15K}$ this work, ^b $S_{298.15K}$ and C_p^{43}
$Na_4B_2O_5(s)$	298.15 < T 1400	-2485969.62	224.6285	311.261869	72.967103	-8.1337002	-14087.5	-2105.410374			$S_{298.15\mathrm{K}}$ this work, ^d $\Delta H_{298.15\mathrm{K}}$ and C_{p}^{43}
Al ₂ O ₃ (corundum)	298.15 < T 600 600 < T < 1500 1500 < T < 2327 2327 < T < 4000	-1676383.29	50.94	67.48039 116.2579 156.0582 192.464	134.9399 14.45137 -14.18213	-18.77562 -42.41404 -247.3334	-85232.7 -1671.19 3776.41				Chase ²⁰⁹
$Al_2O_3(\ell)$	$\begin{array}{l} 298.15 < T < 600 \\ 600 < T < 1500 \\ 1500 < T < 1912 \\ 1912 < T < 2327 \\ 2327 < T < 4000 \end{array}$	-1564606.8	98.6775	67.4804 116.258 156.058 -21987.1791 192.464	134.94 14.4514 -14.1821 13991.05902	-18.7756 -42.414 -247.333 159768.7236	-85232.6 -1671.19 3776.41 -2461357				Taylor et al. ²¹⁰
$Al_4B_2O_9(s)$	298.15 < <i>T</i> < 1500	-4652809.89	171.6068	506.4682		-77.22726		-4083.7494	9.9725608		$\Delta H_{\rm 298.15K}$ this work, $S_{\rm 298.15K}$ and $C_{\rm p}^{\ 211}$
Al ₁₈ B ₄ O ₃₃ (s)	298.15 < <i>T</i> < 2300	-17764514.5	583.4399	1788.0308		-347.52267		-12309.434	40.399304		$\Delta H_{298.15K}$ this work, $S_{298.15K}$ and C_p^{211}
$NaAlO_2(\beta)$	298.15 < <i>T</i> < 2140	-1134391.9	70.36	139.1606				-1143.4999	1.40428967		Lambotte & Chartrand ⁷⁶
$NaAlO_2(\gamma)$	298.15 < <i>T</i> < 2140	-1133094.9	72.1127	139.1606				-1143.4999	1.40428967		"
$NaAlO_2(\delta)$	298.15 < <i>T</i> < 2140	-1131939.9	72.7989	139.1606				-1143.4999	1.40428967		"
Na2Al12O19(s)	298.15 < <i>T</i> < 2000	-10690701.36	418.6424	1157.35601	19.93868	-34.89447	-6403.41	-10425.19423	3.73188145		$\Delta H_{298.15\text{K}}^{148}$, $S_{298.15\text{K}}$ and C_{p}^{76}
Na ₂ Al ₂ B ₂ O ₇ (s)	$\begin{array}{l} 298.15 < T < 600 \\ 600 < T < 1191.56 \\ 1191.56 < T < 1405 \\ 1405 < T < 1500 \\ 1500 < T < 2000 \\ 2000 < T < 2327 \\ 2327 < T < 4000 \end{array}$	-3627944.24	227.4986	320.762107 369.539617 310.253261 348.63726 388.43756 388.43756 424.84336	185.03349 64.54496 58.31647 14.45137 -14.18213 -14.18213	-19.8004413 -43.4388613 -50.5477402 -42.41404 -247.3334 -247.3334	-99320.2 -15758.7 -15758.7 -1671.19 3776.41 3776.41	-2319.648372 -2319.648372			This work
SiO ₂ (low-quartz)	298.15 < T < 373 $373 < T < 848.02$ $848.02 < T < 850$	-910699.94	41.46	80.011992 80.011992 0.04184	8.440022	-35.46684 -35.46684	-45212.7	-240.2759989 -240.2759989	4.915683694 4.915683694 6.	.0550446	Wu et al. ⁸⁴
SiO ₂ (high-quartz)	298.15 < <i>T</i> < 1995.99 1995.99 < <i>T</i> < 3000	-908626.77	44.2068	80.011992 85.772		-35.46684		-240.2759989	4.915683694		"

Table 4.1 cont'd. Enthalpy, entropy, and heat capacity constant values of specified compounds

a 1		ΔH208 15 K	$S_{298.15 K}$ / (J · mol ⁻¹ · K ⁻¹)	$C_{\rm p}^{\rm a}$ constants					2.0
Compound	T range / K	$/(J \cdot mol^{-1})$		a b	С	d	е	f g	Reference
SiO ₂ (high-tridymite)	298.15 < <i>T</i> < 1991.28 1991.28 < <i>T</i> < 3000	-907045.13	45.5237	75.372668 85.772	-59.5809508			9.582461229	17
SiO ₂ (high-quartz)	298.15 < <i>T</i> < 1995.99 1995.99 < <i>T</i> < 3000	-908626.77	44.2068	80.011992 85.772	-35.46684		-240.2759989	4.915683694	"
SiO ₂ (high-tridymite)	298.15 < <i>T</i> < 1991.28	-907045.13	45.5237	75.372668	-59.5809508			9.582461229	"
SiO ₂ (high-cristobalite)) 298.15 < <i>T</i> < 1995.99 1995.99 < <i>T</i> < 3000	-906377.23	46.0288	83.513598 85.772	-24.5535998		-374.6929988	2.800721944	Wu et al. ⁸⁴
${ m SiO}_2(\ell)$	298.15 < <i>T</i> < 1995.99 1995.99 < <i>T</i> < 3000	-896795.87	50.8291	83.513598 85.772	-24.5535998		-374.6929988	2.800721944	n
Na ₂ SiO ₃ (s)	298.15 < <i>T</i> < 1363 1363 < <i>T</i> < 1450	-1561430	113.847	234.77 177.31792			-2218.900009	1.3529999996	Wu et al. ^{84,b}
Na ₄ SiO ₄ (s)	298.15 < <i>T</i> < 1358 1358 < <i>T</i> < 1450	-2108979	195.811	162.59024 74.22416 259.408					"
Na ₁₀ SiO ₇ (s)	298.15 < <i>T</i> < 1358	-3327528.29	528.3676	361.238242 205.81946	6 -24.4011006	-42262.5			Utlak & Besmann ¹⁴⁸
$Na_2Si_2O_5(\alpha)$	298.15 < <i>T</i> < 1148 1148 < <i>T</i> < 1250	-2470070	165.7	250.69 261.20712	-156.510001			22.17000012	Wu et al. ^{84,c}
Na ₂ Si ₂ O ₅ (β)	298.15 < T < 951 $951 < T < 1148$ $1148 < T < 1250$	-2469652	166.1395	250.69 292.88 261.20712	-156.510001			22.17000012	$\Delta H_{298.15K}$ and $S_{298.15K}$, $^{209,c} C_{p}^{84}$
$Na_2Si_2O_5(\gamma)$	298.15 < T < 951 $951 < T < 1148$ $1148 < T < 1250$	-2469024	166.7804	250.69 292.88 261.20712	-156.510001			22.17000012	n
$Na_6Si_2O_7(s)$	298.15 < <i>T</i> < 1397	-3617193.47	349.1774	461.006007	-203.6927012	2	-1005.180017	32.28358041	$\Delta H_{298.15K}^{148}$, $S_{298.15K}^{d}$ and C_{p}^{84}
$Na_{6}Si_{8}O_{19}(s)$	298.15 < <i>T</i> < 1082	-9187800	636.5	987.691985	-355.4062985	5	-4020.719986	54.1059985	Wu et al. ^{84,c}

Table 4.1 cont'd. Enthalpy, entropy, and heat capacity constant values of specified compo-	unds
--	------

المنسارات

Table 4.1 cont'd. Enthalpy, entropy, and heat capacity constant values of specified compounds

		лн	c	$C_{\rm p}^{\rm a}$ constant	ts			
Compound	T range / K	$/ (J \cdot mol^{-l})$	$/ (\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	а	b c	d e	f g	Reference
$NaAlSi_3O_8(low-albite)$	298.15 < T < 2000	-3935000	207.4	394.18993	-76.68033	-2438.11327	10.17706412	Lambotte & Chartrand ⁷⁶
NaAlSi ₃ O ₈ (high-albite)	298.15 < T < 2000	-3923302.7	219.6723	394.18993	-76.68033	-2438.11327	10.17706412	"
NaAlSi ₃ O ₈ (monalbite)	298.15 < T < 2000	-3915260.6	226.1	394.18993	-76.68033	-2438.11327	10.17706412	"

^a $C_{\rm p}/(\text{J}\cdot\text{mol}^{-1}\cdot\text{K}^{-1}) = a + b \cdot 10^{-3}T + c \cdot 10^{5}T^{-2} + d \cdot 10^{-9}T^{2} + e \cdot T^{-0.5} + f \cdot 10^{8}T^{-3} + g \cdot T^{3}$

^b $\Delta H_{298,15K}$ slightly modified in FTOxid FactSage database

^c $\Delta H_{298.15\text{K}}$ and $S_{298.15\text{K}}$ slightly modified in FTOxid FactSage database ^d $S_{298.15\text{K}}$ slightly modified in FTOxid FactSage database

Table 4.2. Model parameters for solid solution (all $^{\circ}G$ and L parameter units are J/mol)

$$\begin{split} \overline{\text{Malinkoite } ((\text{Na} - \text{B})^{+4}, (\text{Va} - \text{Si})^{+4})_8 [\text{Si}^{+4}]_8 \{\text{O}^{-2}\}_{32}} \\ & ^{\circ}G_{\text{Na}_8\text{B}_8\text{Si}_8\text{O}_{32}} = 4 \cdot ~^{\circ}\text{G}_{\text{Na}_2\text{O}(\alpha)} + 4 \cdot ~^{\circ}\text{G}_{\text{B}_2\text{O}_3(s)} + 8 \cdot ~^{\circ}\text{G}_{\text{SiO}_2(\text{high-cristobalite})} - 1.18 \cdot 10^6} \\ & ^{\circ}G_{\text{Si}_{16}\text{O}_{32}} = 16 (~^{\circ}G_{\text{SiO}_2(\text{high-tridymite})} + 6276.0) \\ & \beta \text{-Al}_2\text{O3} (\text{Na}_2\text{O})_1 [\text{Al}_2\text{O}_3]_{11} \{\text{Na}_2\text{O}, \text{Va}\}_1 \text{ (retained from Utlak & Besmann}^{148}) \\ & ^{\circ}G_{\text{Na}_4\text{Al}_{22}\text{O}_{35}} = 2^{\circ}G_{\text{NaAl}_{11}\text{O}_1} + {}^{\circ}G_{\text{Na}_2\text{O}(\alpha)} - 154808 \\ & ^{\circ}G_{\text{Na}_2\text{Al}_{22}\text{O}_{34}} = 2^{\circ}G_{\text{NaAl}_{11}\text{O}_1} \\ & ^{\circ}G_{\text{Na}_2\text{Al}_{20}\text{O}_{34}} = 2^{\circ}G_{\text{NaAl}_{11}\text{O}_1} \\ & ^{\circ}L_{\text{Na}_2\text{O}:\text{Al}_2\text{O}_3:\text{Na}_2\text{O},\text{Va}} = -271700 - 3T \\ \end{split}$$
 $\begin{aligned} \text{Mullite } (\text{Al}^{+3})_2 [\text{Al}^{+3}, \text{B}^{+3}, \text{Si}^{+4},] \{\text{O}^{-2}, \text{Va}\}_5 \\ & ^{\circ}G_{\text{Al}_3\text{O}_5^{-1}} = {}^{\circ}G_{\text{Al}_3\text{Va}^{+9}} = 0.5^{\circ}G_{\text{Al}_2\text{O}_3(\text{corundum})} + 86508.38 - 0.418T \\ & ^{\circ}G_{\text{Al}_2\text{SiO}_5} = {}^{\circ}G_{\text{Al}_2\text{SiVa}^{+10}} = {}^{\circ}G_{\text{Al}_2\text{SiO}_5(\text{sillimanite})} + 9957.92 - 3.347T \\ & ^{\circ}G_{\text{Al}_2\text{BO}_5^{-1}} = {}^{\circ}G_{\text{Al}_2\text{BVa}^{+9}} = 0.5^{\circ}G_{\text{Al}_4\text{B}_2\text{O}_9(\text{s})} + 1024.84 + 20.92T \\ & ^{\circ}L_{\text{Al}^{+3}:\text{Al}^{+3},\text{Si}^{+4}:\text{O}^{-2}} = {}^{\circ}L_{\text{Al}^{+3}:\text{Al}^{+3},\text{Si}^{+4}:\text{Va}} = -92048.0 \\ & ^{\circ}L_{\text{Al}^{+3}:\text{B}^{+3},\text{Si}^{+4}:\text{O}^{-2}} = 5000 - 56T \end{aligned}$

Oxide liquid ^a $(Al^{+3}, Na^{+1})_{p} (AlO_{2}^{-1}, O^{-2}, SiO_{2}^{-1})_{p}$	$a_{4}^{-4}, BO_{3}^{-3}, B_{3}O_{4.5}^{0}, SiO_{2}^{0})_{\Omega}$							
${}^{\mathrm{o}}G_{\mathrm{Al}^{+3}:\mathrm{BO}_{3}^{-3}} = 1.5{}^{\mathrm{o}}G_{\mathrm{B}_{2}\mathrm{O}_{3}(\ell)} + 1.5{}^{\mathrm{o}}G_{\mathrm{Al}_{2}\mathrm{O}_{3}(\ell)} + 21653.682 + 25.88113T$								
${}^{\mathrm{o}}G_{\mathrm{Al}^{+3}:\mathrm{B}_{3}\mathrm{O}_{4,5}^{0}} = 4.5 {}^{\mathrm{o}}G_{\mathrm{B}_{2}\mathrm{O}_{3}(\ell)}$								
${}^{\mathrm{o}}G_{\mathrm{Na}^{+1}:\mathrm{BO}_{3}^{-3}} = 1.5^{\mathrm{o}}G_{\mathrm{Na}_{2}\mathrm{O}(\ell)} + 0.5^{\mathrm{o}}G_{\mathrm{B}_{2}\mathrm{O}_{3}(\ell)} - 0.5^{\mathrm{o}}G_{\mathrm{B}_{2}\mathrm{O}_$	-320809.298 + 51.48266T							
${}^{\mathrm{o}}G_{\mathrm{Na}^{+1}:\mathrm{B}_{3}\mathrm{O}_{4.5}^{0}} = 1.5{}^{\mathrm{o}}G_{\mathrm{B}_{2}\mathrm{O}_{3}(\ell)}$								
${}^{0}L_{\mathrm{Na}^{+1}:\mathrm{O}^{-2},\mathrm{BO}_{3}^{-3}} = -74488 + 31.27T$	${}^{1}L_{\text{Na}^{+1}:\text{AIO}_{2}^{-1},\text{BO}_{3}^{-3}} = -31493$							
${}^{1}L_{\mathrm{Na}^{+1}:\mathrm{O}^{-2},\mathrm{BO}_{3}^{-3}} = -26891.7$	${}^{0}L_{\mathrm{Na}^{+1}:\mathrm{AIO}_{2}^{-1},\mathrm{B}_{3}\mathrm{O}_{4.5}^{0}} = -206353 - 10T$							
${}^{0}L_{\mathrm{Na}^{+1}:\mathrm{BO}_{3}^{-3},\mathrm{B}_{3}\mathrm{O}_{4.5}^{0}} = -248431 - 65.55T$	${}^{1}L_{\mathrm{Na}^{+1}:\mathrm{AIO}_{2}^{-1},\mathrm{B}_{3}\mathrm{O}_{4.5}^{0}} = -131712 + 10T$							
${}^{1}L_{\mathrm{Na}^{+1}:\mathrm{BO}_{3}^{-3},\mathrm{B}_{3}\mathrm{O}_{4.5}^{0}} = -85047 + 98.92T$	${}^{2}L_{\mathrm{Na}^{+1}:\mathrm{AIO}_{2}^{-1},\mathrm{B}_{3}\mathrm{O}_{4.5}^{0}} = -110597$							
${}^{2}L_{\mathrm{Na}^{+1}:\mathrm{BO}_{3}^{-3},\mathrm{B}_{3}\mathrm{O}_{4.5}^{0}} = -63847 + 59.34T$	${}^{0}L_{\text{Al}^{+3},\text{Na}^{+1}:\text{AlO}_{2}^{-1},\text{BO}_{3}^{-3}} = -100T$							
${}^{0}L_{\mathrm{Al}^{+3}:\mathrm{AlO}_{2}^{-1},\mathrm{B}_{3}\mathrm{O}_{4.5}^{0}} = 18800$	${}^{1}L_{\text{Al}^{+3},\text{Na}^{+1}:\text{AlO}_{2}^{-1},\text{BO}_{3}^{-3}} = -100T$							
${}^{0}L_{\mathrm{Na}^{+1}:\mathrm{BO}_{3}^{-3},\mathrm{SiO}_{2}^{0}} = 32768 - 153T$	${}^{0}L_{\text{AI}^{+3}:\text{BO}_{3}^{-3},\text{SiO}_{2}^{0}} = 126779 - 170T$							
${}^{1}L_{\mathrm{Na}^{+1}:\mathrm{BO}_{3}^{-3},\mathrm{SiO}_{2}^{0}} = -19933 + 111.5T$	${}^{1}L_{\text{Al}^{+3}:\text{BO}_{3}^{-3},\text{SiO}_{2}^{0}} = -2289 - 96.8T$							
${}^{2}L_{\mathrm{Na}^{+1}:\mathrm{BO}_{3}^{-3},\mathrm{SiO}_{2}^{0}} = 32590$	${}^{0}L_{\rm AI^{+3}:B_{3}O_{4,5}^{0},SiO_{2}^{0}} = 54261 - 51.8T$							
${}^{0}L_{\mathrm{Na}^{+1}:\mathrm{B}_{3}\mathrm{O}_{4.5}^{0},\mathrm{SiO}_{2}^{0}} = 220954 - 255T$	$^{\text{AlO}_2^{-1}}L_{\text{Al}^{+3}:\text{AlO}_2^{-1},\text{BO}_3^{-3},\text{SiO}_2^0} = -682389$							
${}^{1}L_{\mathrm{Na}^{+1}:\mathrm{B}_{3}\mathrm{O}_{4.5}^{0},\mathrm{SiO}_{2}^{0}} = -62887 + 45T$	$^{\mathrm{BO}_3^{-3}}L_{\mathrm{Al}^{+3}:\mathrm{AlO}_2^{-1},\mathrm{BO}_3^{-3},\mathrm{SiO}_2^0} = -289894$							
${}^{2}L_{\mathrm{Na}^{+1}:\mathrm{B}_{3}\mathrm{O}_{4.5}^{0},\mathrm{SiO}_{2}^{0}} = 30T$	${}^{\text{SiO}_2^0}L_{\text{Al}^{+3}:\text{AIO}_2^{-1},\text{BO}_3^{-3},\text{SiO}_2^0} = -180968$							
${}^{0}L_{\mathrm{Na}^{+1}:\mathrm{SiO}_{4}^{-4},\mathrm{BO}_{3}^{-3}} = -92775 - 10T$	$^{\text{AlO}_2^{-1}}L_{\text{Al}^{+3}:\text{AlO}_2^{-1},\text{B}_3\text{O}_{4.5}^0,\text{SiO}_2^0} = -780417 - 220.6T$							
${}^{1}L_{\mathrm{Na}^{+1}:\mathrm{SiO}_{4}^{-4},\mathrm{BO}_{3}^{-3}} = -30T$	${}^{B_3O_{4.5}^0}L_{Al^{+3}:AlO_2^{-1},B_3O_{4.5}^0,SiO_2^0} = 103224 + 71.17$							
${}^{0}L_{\mathrm{Na}^{+1}:\mathrm{SiO}_{4}^{-4},\mathrm{B}_{3}\mathrm{O}_{4.5}^{0}} = -328622$	${}^{\text{SiO}_2^0}L_{\text{Al}^{+3}:\text{AlO}_2^{-1},\text{B}_3\text{O}_{4.5}^0,\text{SiO}_2^0} = -287290 - 104.7T$							
${}^{0}L_{\mathrm{Na}^{+1}:\mathrm{AlO}_{2}^{-1},\mathrm{BO}_{3}^{-3}} = -69894$								

Table 4.3. Model parameters for oxide liquid (all °G and L parameter units are J/mol)

^a Model endmember and RK interaction parameters consisting of only Na₂O, Al₂O₃, and/or SiO₂ species are reported in Utlak & Besmann.¹⁴⁸

Table 4.4. Invariant points of Na₂O, Al₂O₃, and SiO₂ pseudo-binary subsystems with B2O3 as well as NaBO2-Al2O3 system

Invariant point	Calculated		Measured		References
$Na_2O-B_2O_3$ system (Fig. 4.1)	$X_{B_2O_3}^{a}$	T/K	$X_{B_2O_3}$	T/K	
$Na_2O(\gamma) + Na_3BO_3$ eutectic	0.183	724	0.202	728	Milman & Bouaziz ¹⁶⁴
$Na_3BO_3 + Na_4B_2O_5$ eutectic	0.296	851	0.301	843	"
$Na_4B_2O_5 + NaBO_2$ eutectic	0.350	899	0.348	905	"
$NaBO_2 + Na_2B_4O_7$ eutectic	0.640	1006	0.654	1013	Morey & Merwin ¹⁶³
			0.665	1016	Milman & Bouaziz ¹⁶⁴
$Na_2B_4O_7 + NaB_3O_5$ eutectic	0.680	1010	0.699	995	Morey & Merwin ¹⁶³
			0.708	1001	Milman & Bouaziz ¹⁶⁴
$NaB_3O_5 + Na_2B_8O_{13}$ peritectic	0.727	1038	0.740	1038	"
Na ₂ B ₈ O ₁₃ + NaB ₅ O ₈ peritectic	0.847	1058	0.931	1058	"
NaB ₅ O ₈ + NaB ₉ O ₁₄ peritectic	0.963	955	0.869	955	"
Na ₂ O(α) $T_{\rm m}^{\ b}$		1405		1405	Wu et al. ⁸⁴
Na ₃ BO ₃ $T_{\rm m}$		950		948	Milman & Bouaziz ¹⁶⁴
$Na_4B_2O_5 T_m$		908			
NaBO ₂ $T_{\rm m}$		1241		1203	Burgess & Holt ²¹²
				1239	van Klooster ²¹³
				1238	Cole et al. ²¹⁴
				1239	Morey & Merwin ¹⁶³
$Na_2B_4O_7 T_m$		1011		1015	Day & Allen ²¹⁵
				1005	Ponomareff ²¹⁶
				1008	Cole et al. ²¹⁴
				1011	Menzel ²¹⁷
				1064	Burgess & Holt ²¹²
				1016	Morey & Merwin ¹⁶³
				1015	Liang et al. ¹⁶⁵
				1015	Ghanbari-Ahari & Cameron ¹⁸⁷
$NaB_3O_5 T_m$	0.727	1038	0.738	1039	Morey & Merwin ¹⁶³
			0.75	1038	Liang et al. ¹⁶⁵
				967	Ponomareff ²¹⁶
				993	Cole et al. ²¹⁴
$Na_2B_8O_{13} T_m$		1071		1131	Burgess & Holt ²¹²
				1083	Cole et al. ²¹⁴
				1089	Morey & Merwin ¹⁶³
				1088	Liang et al. ¹⁶⁵
				1089	Rockett & Foster ¹⁸⁸
NaB ₅ O ₈	0.847	1058	0.833	1077	Liang et al. ¹⁶⁵
				1058	Milman & Bouaziz ¹⁶⁴
$B_2O_3 T_m$		724		724	Barin ²⁰⁸

^a X_{compound} = mole fraction of specified compound ^b T_{m} = melting temperature in inverse kelvin

Invariant point	Calcul	ated	Measu	red	References
B ₂ O ₃ -Al ₂ O ₃ system (Fig. 4.5)	$X_{B_2O_3}$	T/K	$X_{B_2O_3}$	T/K	
Al ₁₈ B ₄ O ₃₃ $T_{\rm m}$		2224		1713	Scholze ¹⁷⁷
				1713	Kim & Hummel ¹⁷⁸
				2223	Baumann &
Al ₄ B ₂ O ₉ $T_{\rm m}$		1463		1323	Scholze ¹⁷⁷
				1303	Kim & Hummel ¹⁷⁸
				1308	Gielisse & Foster ¹⁸⁰
				1463	Rymon-Lipinski ¹⁸¹
Al ₂ O ₃ (corundum) $T_{\rm m}$		2327		2327	Eriksson et al. ⁸⁰
B ₂ O ₃ -SiO ₂ system (Fig. 4.6 & Fig. 4.7)	$X_{B_2O_3}$	T/K	$X_{B_2O_3}$	T/K	
SiO ₂ (high-cristobalite) T _m		1996		1996	Weber & Venero ²¹⁸
NaBO2-Al2O3 (Fig. Fig. 4.14)	$X_{Al_2O_3}$	T/K	$X_{Al_2O_3}$	T/K	
NaBO ₂ -Na ₂ Al ₂ B ₂ O ₇ eutectic	0.187	1119.6	0.182	1119	Peshev et al. ¹⁹⁴
Na ₂ Al ₂ B ₂ O ₇ -β-Al ₂ O ₃ peritectic	0.333	1259.0	0.315	1259	"

Table 4.4 cont'd. Invariant points of Na₂O, Al₂O₃, and SiO₂ pseudo-binary subsystems with B₂O₃ as well as NaBO₂-Al₂O₃ system

$X_{\rm N} = X_{\rm D} = X_{\rm CO} = T^{\rm m}/K^{18}$	$6_{,a} T^{c}/K^{b} X_{V} \rightarrow X_{D} \rightarrow X_{C} \rightarrow T^{m}/K^{18}$	$^{6} T^{c}/K$ $X_{b} = X_{b} = X_{c} = T^{m}/K^{186} T^{c}/K$
$A_{Na_2} O_{B_2} O_3 A_{S_1} O_2 I I R$	$\frac{11(7.0.227.0.717.0.05(1027.0.717.0.00)))}{100000000000000000000000000000000$	$\frac{1}{1052} = 0.40(0.0020.4121220) = 11(2)$
0.499 0.339 0.103 1185	116/0.22/0./1/0.056103/	1052 0.496 0.092 0.412 1239 1165
0.498 0.268 0.214 1105	1135 0.234 0.71 0.030 1031	$1046\ 0.30\ 0.157\ 0.305\ 1042\ 961.7$
0.498 0.240 0.250 1155	1122 0 004 0 808 0 007 070	1045 0 484 0 156 0 26 1128 1127
0.4410.44 0.118.1172	1122 0.094 0.808 0.097 970	$1043 \ 0.464 \ 0.130 \ 0.30 \ 1136 \ 1127$ $1062 \ 0.457 \ 0.164 \ 0.270 \ 1144 \ 1115$
0.4410.44 0.11811/2	1133 0.178 0.71 0.112 1039	$1002 \ 0.437 \ 0.104 \ 0.379 \ 1144 \ 1113 \ 1058 \ 0.475 \ 0.172 \ 0.252 \ 1125 \ 1117$
0.419 0.419 0.102 1133	1000 0 214 0 672 0 114 1020	$1036\ 0.475\ 0.172\ 0.355\ 1155\ 1117$ $1047\ 0.406\ 0.186\ 0.218\ 1120\ 1110$
0.392 0.392 0.210 1103	1046 0 174 0 648 0 177 1026	$1047 \ 0.490 \ 0.180 \ 0.518 \ 1150 \ 1110$ $1047 \ 0.508 \ 0.140 \ 0.242 \ 1152 \ 1127$
0.204.0.206.0.41 866	084 0 213 0 62 0 167 082	$1047 \ 0.508 \ 0.149 \ 0.545 \ 1155 \ 1127$ $1032 \ 0.25 \ 0.25 \ 0.5 \ 1040 \ 1004$
0.564.0.246.0.19 1093	1080 0 084 0 719 0 197 952	1032 0.23 0.23 0.3 1040 1004
0.514.0.274.0.212.1149	1145 0 162 0 623 0 215 1040	1038 0 278 0 244 0 478 1039 1003
0.464.0.303.0.234.1165	1151 0 033 0 744 0 224 929	1006 0 342 0 258 0 4 1012 965 6
0.413.0.331.0.256.1136	1110 0 074 0 644 0 282 943	1012 1012 1012 1012
0.397.0.34 0.263.1072	1089 0 125 0 592 0 283 992	1012
0.3360.3740.29 1035	990 0 142 0 572 0 286 973	1014
0.294 0.399 0.307 900	985 0.178 0.549 0.273 955	1011
0.311 0.369 0.321 964	980 0.211 0.517 0.272 931	1006
0.411 0.291 0.299 1074	1084 0.096 0.603 0.301 961	1010
0.35 0.321 0.329 1015	999 0.099 0.585 0.316 949	1005
0.309 0.341 0.35 935	972 0.163 0.521 0.317 954	998.6
0.299 0.346 0.354 903	976 0.134 0.538 0.328 963	999.3
0.289 0.351 0.36 887	979 0.216 0.451 0.334 901	985.9
0.335 0.601 0.064 967	1006 0.054 0.61 0.336 940	986.9
0.327 0.558 0.115 944	1009 0.073 0.568 0.358 944	986.1
0.43 0.173 0.397 1045	1088 0.032 0.596 0.373 905	965.3
0.397 0.182 0.421 1053	1041 0.169 0.46 0.371 998	999.6
0.378 0.16 0.462 1005	1013 0.124 0.497 0.379 979	1005
0.317 0.207 0.476 917	975 0.204 0.411 0.386 1020	996.1
0.355 0.224 0.421 1039	974 0.062 0.545 0.393 950	990.9
0.356 0.189 0.455 992	972 0.198 0.403 0.399 1040	1005
0.349 0.203 0.448 975	971 0.123 0.456 0.422 1063	1032
0.334 0.208 0.458 950	973 0.231 0.342 0.428 874	998.8
0.324 0.211 0.465 939	972 0.177 0.295 0.528 1060	1074
0.312 0.209 0.479 911	978 0.215 0.277 0.508 1042	1041
0.314 0.458 0.228 973	1003 0.223 0.253 0.524 1033	1038
0.383 0.226 0.391 1063	1011 0.192 0.237 0.571 1044	1073
0.328 0.616 0.057 985	1007 0.022 0.393 0.586 1098	1140
0.299 0.59 0.11 969	1010 0.212 0.212 0.576 1057	1055
0.313 0.523 0.164 914	1011 0.264 0.114 0.622 949	996.3
0.286 0.527 0.187 908	1009 0.091 0.27 0.639 1015	1199
0.292 0.418 0.29 901	989 0.1970.16 0.6431211	1060
0.24/0.698 0.055 101/	1039 0.063 0.253 0.685 1125	1268
0.267 0.678 0.055 1005	1030 0.065 0.208 0.727 1146	1317
0.28 0.604 0.116 967	1018 0.079 0.106 0.815 1371	1399
0.287 0.658 0.055 991	1021 0.059 0.123 0.81 / 1323	1457
0.26/0.56/0.106926		1498
0.24 0.300 0.193 946	1021 0.02 0.139 0.821 1180	1321
0.213 0.392 0.194 9/1	1020 0.306 0.141 0.331 9/9	901.2 084
0.204 0.31 / 0.219 90/	1000 0.512 0.152 0.557 1028	20 1 088 7
0.217 0.304 0.219 932	1020 0.201 0.101 0.010 983	980.8
0.251 0.305 0.240 892	997 0 336 0 052 0 611 1079	1007
0.2040.47 0.200.698	1066 0 499 0 101 0 31 1127	1107
0 207 0 736 0 057 1062	1062 0 497 0 136 0 367 1120	1137
0.207 0.750 0.057 1002	1002 0.477 0.130 0.307 1107	1107

Table 4.5. Liquidus temperatures of Na₂O-B₂O₃-SiO₂ system (Fig. 4.8)

^a $T^{\rm m}$ = measured temperature ^b $T^{\rm c}$ = calculated temperature

Turne at an et al.	Measured				Calculated				Defense	
Invariant point	$X_{\rm Na_2O}$	$X_{B_2O_3}$	X_{SiO_2}	T/K	X_{Na_2O}	$X_{B_2O_3}$	X_{SiO_2}	T/K	References	
NaBO ₂ -Na ₂ SiO ₃	0.5	0.196	0.304	1105	0.498	0.214	0.289	1106	Morey ¹⁸⁶	
NaBO ₂ -SiO ₂	metastable				0.275	0.283	0.443	803	"	
$Na_2B_8O_{13}$ -SiO ₂	0.129	0.518	0.353	991	0.129	0.518	0.353	948	"	
NaBO2-Na2Si2O5-Na2SiO3	0.346	0.228	0.425	965	0.331	0.161	0.508	913	"	
NaBO ₂ -Na ₂ Si ₂ O ₅ -SiO ₂	metastable				0.273	0.225	0.501	793	"	
NaBO ₂ -Na ₂ B ₄ O ₇ -SiO ₂	metastable				0.277	0.301	0.423	793	"	
Na ₂ B ₄ O ₇ -SiO ₂ -NaB ₃ O ₅	metastable				0.248	0.378	0.374	843	"	
NaB ₃ O ₅ -SiO ₂ -Na ₂ B ₈ O ₁₃	0.185	0.470	0.345	984	0.218	0.417	0.365	873	"	
B_2O_3 - $Na_2B_8O_{13}$ - SiO_2	metastable				0.022	0.955	0.023	713	Ghanbari-Ahari & Cameron ¹⁸⁷	
Na ₂ B ₈ O ₁₃ -SiO ₂ -NaB ₃ O ₅	0.185	0.470	0.345	984	0.218	0.417	0.365	923	"	
NaB ₃ O ₅ -SiO ₂ -Na ₂ B ₄ O ₇	metastable				0.233	0.392	0.374	893	"	
Na ₂ B ₄ O ₇ -SiO ₂ -NaBO ₂	metastable				0.258	0.354	0.388	783	"	
NaBO ₂ -SiO ₂ -Na ₂ Si ₂ O ₅	metastable				0.273	0.216	0.511	783	"	
NaBO ₂ -Na ₂ Si ₂ O ₅ -Na ₂ SiO ₃	0.346	0.228	0.425	965	0.326	0.152	0.522	913	"	
NaBO2-Na2SiO3-Na4B2O5 ^a	0.621	0.274	0.105	933	0.617	0.256	0.127	873	"	
Na ₄ B ₂ O ₅ -Na ₂ SiO ₃ -Na ₄ SiO ₄ ^b	0.651	0.287	0.062	842	0.65	0.219	0.132	873	"	
Na4B2O5-Na4SiO4-Na2O ^c	0.699	0.256	0.045	815	0.697	0.219	0.084	873	"	

Table 4.6. Invariant points of Na₂O-B₂O₃-SiO₂ system (Fig. 4.8)

^a Calculated invariant point consists of NaBO₂-Na₂SiO₃-Na₄SiO₄ phases ^b Calculated invariant point consists of NaBO₂-Na₄B₂O₅-Na₄SiO₄ phases

^c Calculated invariant point consists of Na₄B₂O₅-Na₃BO₃-Na₄SiO₄ phases

$X_{\rm Na_2O}$	$X_{B_2O_3}$	$X_{Al_2O_3}$	$T^{\mathrm{m}} / \mathrm{K}$	<i>T</i> ° / K	References
0.5	0.5	0	1240	1241	Wakasugi et al. ²⁰¹
0.46	0.46	0.079	1211	1200	"
0.45	0.45	0.1	1183	1191	"
0.44	0.44	0.12	1173	1180	"
0.43	0.43	0.14	1158	1166	"
0.42	0.42	0.159	1131	1150	"
0.41	0.41	0.18	1117	1129	"
0.40	0.40	0.20	1149	1136	"
0.39	0.39	0.22	1172	1163	"
0.38	0.38	0.24	1195	1188	"
0.37	0.37	0.260	1207	1211	"
0.36	0.36	0.279	1236	1231	"
0.35	0.35	0.30	1253	1248	"
0.34	0.34	0.32	1252	1259	"
0.339	0.341	0.321	1265	1264	"
0.4	0.6	0	1164	1115	Wakasugi et al. ²⁰²
0.36	0.54	0.099	1101	1090	"
0.34	0.51	0.149	1069	1081	"
0.32	0.48	0.199	1086	1098	"
0.3	0.45	0.25	1119	1139	"
0.284	0.424	0.292	1206	1188	"
0.448	0.272	0.28	1093	1158	Binev ¹⁹²
0.434	0.276	0.289	1133	1136	"
0.413	0.283	0.304	1173	1167	"
0.376	0.291	0.333	1213	1335	"
0.358	0.322	0.321	1253	1251	"
0.337	0.359	0.304	1253	1251	"
0.309	0.405	0.286	1213	1209	"
0.283	0.444	0.273	1173	1143	"
0.258	0.48	0.262	1133	1062	"
0.24	0.505	0.254	1093	1165	"
0.385	0.441	0.174	1093	1115	"
0.396	0.425	0.179	1093	1117	"
0.441	0.364	0.195	1093	1112	"
0.455	0.345	0.2	1093	1092	"

Table 4.7. Liquidus temperatures of Na₂O-B₂O₃-Al₂O₃ system (Fig. Fig. 4.13)

$W_{\rm B_2O_3}{}^{\rm a}$	$W_{Al_2O_3}$	$W_{\rm SiO_2}$	$T^{\mathrm{m}} / \mathrm{K}$	<i>T</i> ° / K	References
0.7	0.2	0.1	1723	1748	Gielisse ¹⁷⁹
0.65	0.2	0.15	1723	1716	"
0.6	0.2	0.2	1723	1721	"
0.5	0.2	0.3	1773	1741	"
0.4	0.2	0.4	1788	1774	"
0.75	0.15	0.1	1698	1707	"
0.7	0.15	0.15	1703	1684	"
0.5	0.15	0.35	1738	1708	"
0.8	0.1	0.1	1613	1661	"
0.7	0.1	0.2	1633	1653	"
0.6	0.1	0.3	1673	1657	"
0.4	0.1	0.5	1723	1696	"
0.8	0.05	0.15	1598	1575	"
0.65	0.05	0.3	1598	1587	"
0.9	0.025	0.075	1463	1455	"
0.6625	0.025	0.3125	1513	1495	"
0.104	0.053	0.846	1758	1751	Dietzel & Scholze ²⁰³
0.125	0.095	0.783	1813	1817	"
0.09	0.202	0.708	1928	1932	"
0.175	0.057	0.765	1713	1722	"
0.175	0.095	0.726	1783	1788	"
0.158	0.201	0.645	1878	1890	"
0.134	0.309	0.553	1993	1964	"
0.076	0.45	0.476	2048	2067	"
0.241	0.065	0.688	1658	1707	"
0.196	0.116	0.692	1793	1801	"
0.209	0.209	0.579	1848	1867	"
0.099	0.349	0.556	2008	2003	"
0.302	0.06	0.634	1638	1671	"
0.282	0.115	0.601	1733	1757	"

Table 4.8. Liquidus temperatures of Al₂O₃-B₂O₃-SiO₂ system (Fig. Fig. 4.15)

^a W_{compound} = weight fraction of specified compound

Fig. 4.1. Computed Na₂O-B₂O₃ pseudo-binary phase diagram with experimental measurements shown as points. Data: \times^{164} +¹⁶³ \bigcirc^{165}

Fig. 4.2. Computed curve of enthalpy of mixing for Na₂O-B₂O₃ with experimental measurements shown as points. Data: \Box 1299 K¹³⁷ \bigcirc 974 K¹⁶⁷ \triangle 298 K¹⁶⁶

Fig. 4.3. Computed activity curve of liquid B₂O₃ in Na₂O-B₂O₃ system with experimental measurements shown as points. Data: \bigcirc 1137 K¹⁶⁸ \square 1123 K¹⁶⁹

Fig. 4.4. Partial Gibbs energy of liquid Na₂O in Na₂O-B₂O₃ system referred to $0.5Na_2O + 0.95B_2O_3$ with experimental measurements shown as points. Data: \bigcirc 1137 K¹⁶⁹ \square 1123 K¹⁷¹ \blacktriangledown 1123 K¹⁷² \square 1123K¹⁶⁸

Fig. 4.5. Computed B₂O₃-Al₂O₃ pseudo-binary phase diagram with experimental measurements shown as points. Data: $\bigcirc^{180} \square^{178} \diamondsuit^{219} \times^{177}$

Fig. 4.6. Computed Na₂O-B₂O₃-SiO₂ isopleth with Na₂O mole fraction of 10^{-7} and experimental measurements shown as points. Data: $\bigcirc^{183} \square^{184} \triangle^{185}$ $\bigcirc^{103} \bigtriangledown^{208}$

Fig. 4.7. Computed B₂O₃-Al₂O₃-SiO₂ isopleth with Na₂O mole fraction of 10^{-7} and experimental measurements shown as points. Data: $\bigcirc^{183} \square^{184} \triangle^{185}$ $\bigcirc^{103} \bigtriangledown^{208}$

Fig. 4.8. Computed Na₂O-B₂O₃-SiO₂ system liquidus projections with liquidus and phase composition experimental measurements shown as points. Data: Morey¹⁸⁶: \square NaBO₂, \bigcirc NaBO₂ + Na₂SiO₃, \blacktriangle Na₂B₄O₇, \triangle NaB₃O₅, \bigcirc Na₂B₈O₁₃ + SiO₂(quartz), \diamondsuit Na₂B₈O₁, + SiO₂(quartz), \diamondsuit Na₂SiO₃, \blacksquare Na₂SiO₃, \checkmark Na₂SiO₃ + NaBO₂, \diamondsuit malinkoite, \bigtriangledown invariant points. Ghanbari-Ahari & Cameron¹⁸⁷: \divideontimes invariant points.

Fig. 4.9. Computed Na₂B₄O₇-SiO₂ pseudo-binary phase diagram with experimental measurements shown as points. Data: $\bigcirc^{187} \square^{163, 165, 187, 215}$ $\bigcirc^{103} \times^{216} \bullet^{214} \triangle^{217} \bigcirc^{212}$

Fig. 4.10. Computed Na₂B₈O₁₃-SiO₂ pseudo-binary phase diagram with experimental measurements shown as points. Data: $\bigcirc^{188} \diamondsuit^{103} \square^{212} \triangle^{214}$

Fig. 4.11. Partial Gibbs energy of liquid Na₂O at 1200 K and specified Na₂O constant mole fractions in the Na₂O-B₂O₃-SiO₂ system referred to Na₂O + 2B₂O₃ with experimental measurements shown as points. Data¹⁸⁹: \bigcirc 40 mol% Na₂O, \square 33.3 mol% Na₂O, \triangle 25 mol% Na₂O, \divideontimes 20 mol% Na₂O, \diamondsuit 14.3 mol% Na₂O, \bigcirc 10 mol% Na₂O, \blacksquare 6.25 mol% Na₂O

Fig. 4.12. Partial Gibbs energy of liquid Na₂O at 1223 K and 5 and 10% Na₂O constant mole fractions in the Na₂O-B₂O₃-SiO₂ system referred to pure Na₂O with experimental measurements shown as points. Data¹⁹⁰: \bigcirc 10 mol% Na₂O, \square 5 mol% Na₂O

Fig. 4.13. Computed Na₂O-B₂O₃-Al₂O₃ system liquidus projections with liquidus experimental measurements shown as points. Data: $\bigcirc^{192} \square^{201} \triangle^{202}$

Fig. 4.14. Computed NaBO₂-Al₂O₃ pseudo-binary phase diagram with experimental measurements shown as points. Data: $\bigcirc^{194} \square^{163, 213, 214} \triangle^{212} \diamondsuit^{80}$

Fig. 4.15. Computed Al₂O₃-B₂O₃-SiO₂ system liquidus projections with liquidus experimental measurements shown as points. Data: $\bigcirc^{179} \square^{203}$

4.9. Copyright permission

Rights & Access

RIGHTS & ACCESS

Elsevier Ltd

hermodynamic assessment of the Na2O-AI2O3-SiO2-B2O3 pseudo-binary and -ternary systems
Ir. Stephen A. Utlak
tlak@cec.sc.edu
he Journal of Chemical Thermodynamics
JCHT5530
0021-9614(18)30763-8
0.1016/i.ict.2018.09.001
h li t h c c

YOUR STATUS

I am one author signing on behalf of all co-authors of the manuscript

ASSIGNMENT OF COPYRIGHT

I hereby assign to Elsevier Ltd the copyright in the manuscript identified above (where Crown Copyright is asserted, authors agree to grant an exclusive publishing and distribution license) and any tables, illustrations or other material submitted for publication as part of the manuscript (the "Article"). This assignment of rights means that I have granted to Elsevier Ltd, the exclusive right to publish and reproduce the Article, or any part of the Article, in print, electronic and all other media (whether now known or later developed), in any form, in all languages, throughout the world, for the full term of copyright, and the right to license others to do the same, effective when the Article is accepted for publication. This includes the right to enforce the rights granted hereunder against third parties.

SUPPLEMENTAL MATERIALS

"Supplemental Materials" shall mean materials published as a supplemental part of the Article, including but not limited to graphical, illustrative, video and audio material.

With respect to any Supplemental Materials that I submit, Elsevier Ltd shall have a perpetual worldwide, non-exclusive right and license to publish, extract, reformat, adapt, build upon, index, redistribute, link to and otherwise use all or any part of the Supplemental Materials in all forms and media (whether now known or later developed), and to permit others to do so.

RESEARCH DATA

"Research Data" shall mean the result of observations or experimentation that validate research findings and that are published separate to the Article, which can include but are not limited to raw data, processed data, software, algorithms, protocols, and methods.

With respect to any Research Data that I wish to make accessible on a site or through a service of Elsevier Ltd, Elsevier Ltd shall have a perpetual worldwide, non-exclusive right and license to publish, extract, reformat, adapt, build upon, index, redistribute, link to and otherwise use all or any part of the Research Data in all forms and media (whether now known or later developed) and to permit others to do so. Where I have selected a specific end user license under which the Research Data is to be made available on a site or through a service, the publisher shall apply that end user license to the Research Data on that site or service.

REVERSION OF RIGHTS

Articles may sometimes be accepted for publication but later rejected in the publication process, even in some cases after public posting in "Articles in Press" form, in which case all rights will revert to the author (see https://www.elsevier.com/about/ourbusiness/policies/article-withdrawal).

REVISIONS AND ADDENDA

I understand that no revisions, additional terms or addenda to this Journal Publishing Agreement can be accepted without Elsevier Ltd's express written consent. I understand that this Journal Publishing Agreement supersedes any previous agreements I have entered into with Elsevier Ltd in relation to the Article from the date hereof.

AUTHOR RIGHTS FOR SCHOLARLY PURPOSES

I understand that I retain or am hereby granted (without the need to obtain further permission) the Author Rights (see description below), and that no rights in patents, trademarks or other intellectual property rights are transferred to Elsevier Ltd.

The Author Rights include the right to use the Preprint, Accepted Manuscript and the Published Journal Article for Personal Use and Internal Institutional Use. They also include the right to use these different versions of the Article for Scholarly Sharing purposes, which include sharing:

- the Preprint on any website or repository at any time;
- the Accepted Manuscript on certain websites and usually after an embargo period;
- the Published Journal Article only privately on certain websites, unless otherwise agreed by Elsevier Ltd.

1/2

In the case of the Accepted Manuscript and the Published Journal Article the Author Rights exclude Commercial Use (unless expressly agreed in writing by Elsevier Ltd), other than use by the author in a subsequent compilation of the author's works or to extend the Article to book length form or re-use by the author of portions or excerpts in other works (with full acknowledgment of the original publication of the Article).

AUTHOR REPRESENTATIONS / ETHICS AND DISCLOSURE / SANCTIONS

I affirm the Author Representations noted below, and confirm that I have reviewed and complied with the relevant Instructions to Authors, Ethics in Publishing policy, Declarations of Interest disclosure and information for authors from countries affected by sanctions (Iran, Cuba, Sudan, Burma, Syria, or Crimea). Please note that some journals may require that all co-authors sign and submit Declarations of Interest disclosure of the publisher's policies with respect to retractions and withdrawal (https://www.elsevier.com/about/our-business/oplicies/article-withdrawal).

For further information see the publishing ethics page at https://www.elsevier.com/about/our-business/policies/publishing-ethics and the journal home page. For further information on sanctions, see https://www.elsevier.com/about/our-business/policies/publishing-ethics and the journal home page. For further information on sanctions, see https://www.elsevier.com/about/our-business/policies/trade-sanctions see https://www.elsevier.com/about/our-business/policies/trad

Author representations

- The Article I have submitted to the journal for review is original, has been written by the stated authors and has not been previously
- The Article was not submitted for review to another journal while under review by this journal and will not be submitted to any other
 The Article and the Supplemental Materials do not infringe any copyright, violate any other intellectual property, privacy or other righ entity, or contain any libellous or other unlawful matter.
- I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credit Article or the Supplemental Materials.
- Except as expressly set out in this Journal Publishing Agreement, the Article is not subject to any prior rights or licenses and, if my o institution has a policy that might restrict my ability to grant the rights required by this Journal Publishing Agreement (taking into acc permitted hereunder, including Internal Institutional Use), a written waiver of that policy has been obtained.
- If I and/or any of my co-authors reside in Iran, Cuba, Sudan, Burma, Syria, or Crimea, the Article has been prepared in a personal, a capacity and not as an official representative or otherwise on behalf of the relevant government or institution.
- If I am using any personal details or images of patients, research subjects or other individuals, I have obtained all consents required complied with the publisher's policies relating to the use of such images or personal information. See <u>https://www.elsevier.com/abou business/policies/patient-consent</u> for further information.
- Any software contained in the Supplemental Materials is free from viruses, contaminants or worms.
- If the Article or any of the Supplemental Materials were prepared jointly with other authors, I have informed the co-author(s) of the t Publishing Agreement and that I am signing on their behalf as their agent, and I am authorized to do so.

GOVERNING LAW AND JURISDICTION

This Agreement will be governed by and construed in accordance with the laws of the country or state of Elsevier Ltd ("the Governing State"), without regard to conflict of law principles, and the parties irrevocably consent to the exclusive jurisdiction of the courts of the Governing State.

For information on the publisher's copyright and access policies, please see <u>http://www.elsevier.com/copyright</u>. For more information about the definitions relating to this agreement click here.

✔ I have read and agree to the terms of the Journal Publishing Agreement.

11th September 2018

T-copyright-v22/2017

المنسارات

2/2

Chapter 5

Expansion of Database to Include K₂O, Li₂O, CaO, Fe₂O₃, FeO, and MgO

5.1. Introduction

All pseudo-binary systems of K₂O, Li₂O, CaO, Fe₂O₃, FeO, and MgO with Na₂O, Al₂O₃, SiO₂, and B₂O₃ have been previously assessed (Table 5.1) with the exception of K₂O-B₂O₃, which required a new assessment. Experimental data available in literature for these systems was reviewed in the previous assessments and thus won't be repeated here. While a majority of these systems have been assessed prior to this work, it was necessary to reassess the systems to obtain a self-consistent database. The assessments listed in Table 5.1 were used as bases for the reassessments, and the solutions and stoichiometric compounds added to the database as part of these reassessments are discussed in Sections 5.2, 5.3, and 5.4. Overall, all new assessments agreed very well with data (Fig. 5.1 - Fig. 5.38). A select few diagrams showed minor discrepancies, which will be addressed in the subsections of Section 5.6. Also discussed in this section are notes of interest as it relates to conducting the assessments.

In addition to expanding the database by assessing additional pseudo-binary systems, the nepheline and carnegieite CEF models were expanded by adding minor oxide species to the sublattice formalisms. Details of this expansion process are discussed in Section 5.7 including assessments of the NaAlSiO4-NaFeSiO4 and NaAlSiO4-NaFeSi₂O6 systems as part of adding Fe to the CEF models.

5.2. Expanded liquid phase

The TSPIL model was expanded to account for the oxides K₂O, Li₂O, CaO, MgO, Fe₂O₃, and FeO by adding the species K⁺¹, Li⁺¹, M⁺², Ca⁺², and Fe⁺² to the first sublattice and FeO⁰_{1.5} to the second. The inclusion of the alkaline earth cations and Fe⁺² was straightforward as each combined with the O⁻² anionic species on the second sublattice generated the desired oxide endmember. Addition of the neutral FeO⁰_{1.5} species on the second sublattice to obtain a scaled down Fe₂O₃ endmember enabled Selleby,²²⁰ Fabrichnaya & Sundman,²²¹ and Dreval et al.²²² to successfully assess the FeO-Fe₂O₃-SiO₂^{220, 221} and FeO-Fe₂O₃-Al₂O₃²²² systems; hence, this approach was also adopted in this work to ultimately yield the TSPIL model:

$$(AI^{+3}, Na^{+1}, K^{+1}, Li^{+1}, Mg^{+2}, Ca^{+2}, Fe^{+2})_{P} (AIO_{2}^{-1}, O^{-2}, SiO_{4}^{-4}, BO_{3}^{-3}, B_{3}O_{4.5}^{0}, FeO_{1.5}^{0}, SiO_{2}^{0})_{Q}.$$

The endmember Gibbs energy functions as well as the 106 RK interaction parameters required to assess the pseudo-binary major-minor oxide systems are displayed in Table 5.2. An additional 5 RK parameters were needed to complete assessments of the NaAlSiO₄-NaFeSiO₄ and NaAlSiO₄-NaFeSi₂O₆ systems (Table 5.2). Gibbs energies of the liquid oxide components that contributed to the TPSIL endmember Gibbs energies are displayed in Table 5.3.

5.3. Solid solutions in major-minor oxide systems

6 solid solutions were added to the database, and the β -Al₂O₃ model was expanded from the previous assessment of the Na₂O-Al₂O₃ system (Section 3.6.2) as part of assessing the major-minor pseudo-binary oxide systems (Table 5.4).

The nepheline and carnegieite CEF models resulting from the assessment of the Na₂O-Al₂O₃-SiO₂ system (Section 3.6.4) were expanded to include minor oxide species as discussed in detail in Section 5.7.

5.3.1.1. Wustite

The one-lattice polynomial model structure was adopted from Moosavi-Khoonsari & Jung.²²³ However, as this assessment employed the Modified Quasichemical Model¹⁷⁵ to characterize the liquid phase of the Na₂O-FeO-Fe₂O₃ system, the wustite model required reoptimization to experimental data. Also, the Fe₂O₃ species included by Moosavi-Khoonsari & Jung²²³ was removed from the model lattice as wustite is not stable in the Na₂O-Fe₂O₃ system.

5.3.2. Fe-Spinel, Mg-Spinel, & Mg-Halite

Endmember Gibbs energies were initially adopted from Dreval et al²²² and Zienert & Fabrichnaya²²⁴ for the Fe- and Mg-Spinel solid solutions, respectively. However, as the TSPIL models used by Dreval et al²²² and Zienert & Fabrichnaya²²⁴ contained the AlO_{1.5} species instead of the AlO₂ species used in this work, the liquid model parameters differed. This resulted in the need to reoptimize the Fe- and Mg-Spinel as well as Mg-Halite solid solutions to experimental data. Revised endmember Gibbs energies in the form of standard enthalpies and entropies of formation and heat capacities are listed in Table 5.5 while the RK parameters for these solutions are in Table 5.4.

5.4. Stoichiometric compounds of expanded database

Table 5.6 lists all the stoichiometric compounds added to the database from the expansion process, which totals to 148. 85 were added from assessing the pseudo-binary major-minor oxide systems. The remaining 63 consist of all the ternary and higher order phases available in the FactSage⁴³ FToxid, FactPS, and TDnucl databases that were composed of oxides contained in the database, which were added to be comprehensive and to account for the formation of secondary phases such as pyroxene that have been observed to form in HLW glass samples.⁵⁴

The Gibbs energy descriptions of 20 compounds were obtained from references external to FactSage, and 10 were developed in this work, the latter contributing to assessments of the K₂O-B₂O₃, Fe₂O₃-B₂O₃, and FeO-B₂O₃ systems. Derivation of the Gibbs energy functions followed the same method as discussed in Sections 3.4.1 and 4.4.2, where the Neumann-Kopp rule^{204, 225} was initially applied to estimate heat capacities and then standard enthalpies of formation were optimized to experimental data.

5.5. Addition of O₂ molecule

The gaseous O_2 molecule was added to the database to enable assessment of systems containing Fe as experimental measurements were often made with samples exposed to air. Thermodynamic values for $O_2(g)$ are listed in Table 5.7.

5.6. Assessments of major-minor oxide pseudo-binary systems

5.6.1. Na₂O with alkali earth metals

Rankin & Merwin²²⁶ observed that in all fused mixtures of CaO and MgO, the two oxides crystallized out and showed no evidence of forming a stable compound in contact with the melt indicating the tendency for alkali and alkali earth metals to favor separation

as opposed to intermediate compound formation. Pseudo-ternary thermodynamic studies^{87, 227-235} containing various combinations of Na₂O, K₂O, Li₂O, and/or MgO as two of the three oxides considered have confirmed this result with no intermediate compound consisting exclusively of Na₂O with K₂O, Li₂O, or MgO reported as stable. Due to this, similar to the approach applied by Vedishcheva & Shakhmatkin,²²⁸ the liquid phase of the pseudo-binary systems of Na₂O with K₂O, Li₂O, and MgO were treated as ideal solutions. 5.6.2. K₂O-Al₂O₃

As noted by Eriksson et al.,⁸⁰ the phase equilibria data reported by Moya et al.²³⁶ conflicts with Eliezer & Howald²³⁷ and Roth,²³⁸ hence the Moya et al. data was neglected in the optimization of the K₂O-Al₂O₃ system. As noted by Eriksson et al.⁸⁰ and indicated by Fig. 3.2, studies indicate that β -Al₂O₃ has a narrow solubility range in the NaAl₉O₁₄ to Na₂Al₁₂O₁₉ composition region, which conflicts with the experimental data available for the similar K-containing β -Al₂O₃ solution (Fig. 5.2). Thus, while this led Eriksson et al.⁸⁰ to treat β -Al₂O₃ as a line compound with the composition KAl₉O₁₄, the present assessment added K₂O to the existing β -Al₂O₃ solid solution CEF model (Table 5.4) and was optimized to have a solubility range similar to Fig. 3.2.

5.6.3. K₂O-SiO₂

Due to a lack of experimental data, the liquidus boundary of Fig. 5.3 at > 50 mol% SiO₂ required estimation. While Zhang et al. did not include the K₄SiO₄ compound in their assessment of the K₂O-SiO₂ system, the TSPIL model in this work required the inclusion of this compound to reasonably represent the phase equilibrium behavior in this region. The intermediate compound Na₄SiO₄ is known to form in the similar Na₂O-SiO₂ system (Fig. 3.3) and thus provides a strong basis for the inclusion of K₄SiO₄ in Fig. 5.3.

5.6.4. K₂O-B₂O₃

The K₂O-B₂O₃ system required a new assessment. Phase equilibria data from Rollet,^{239, 240} Polyakova & Tokareva,²⁴¹ and Kaplun & Meshalkin²⁴² were considered when conducting the assessment. The more recent experimental studies of Polyakova & Tokareva,²⁴¹ and Kaplun & Meshalkin²⁴² were more self-consistent than the data reported by Rollet,^{239, 240} hence the former data was included in the system optimization. The assessment compromised between the K₂B₄O₇-K₂B₆O₁₀ eutectic and K₁₀B₃₈O₆₂ melting temperatures, ultimately obtaining reasonable agreement with both.

5.6.5. Fe₂O₃-Na₂O at 0.21 atm O₂ partial pressure

Similar to the assessment of the K₂O-SiO₂ system, the liquidus boundary in the Fe₂O₃-Na₂O system in air at > 50 mol% Na₂O required estimation due to lack of equilibria data. While the estimated liquidus curve in Fig. 5.22 differs from the previous assessment,²²³ the shape of the curve at > 50 mol% Na₂O was required to obtain the overall fit to experimental data.

5.6.6. Fe₂O₃-SiO₂

Experimental data was not exclusively available for Fe₂O₃-SiO₂. The previous assessment conducted by Selleby²²⁰ generated the Fe₂O₃-SiO₂ diagram from the assessment of the Fe₂O₃-FeO-SiO₂ pseudo-ternary system. The new assessment of the system incorporated the invariant points calculated by Selleby²²⁰ and obtained good agreement.

5.6.7. FeO-B₂O₃ saturated with solid Fe

Fig. 5.32 displays better agreement with liquidus curve reported by Koch et al. in the Slag Atlas²⁴³ than the data measured by Fujiwara et al.²⁴⁴ As expected, discrepancy also

exists between database calculations of solid and liquid FeO activity with the activity data of Fujiwara et al.²⁴⁴ as the authors used the activity measurements as a basis for the liquidus boundary points. As noted by Jakobsson et al.²⁴⁵ in a previous assessment of the FeO-B₂O₃ system, experimental data is limited, and thus obtaining good agreement with phase equilibrium data from one of the two available studies is considered sufficient.

5.6.8. MgO-B₂O₃

Similar to the assessment by Chen et al.,¹⁶² the calculated activity curves of Fig. 5.38 have better agreement with Zhang & Ji²⁴⁶ than Wang et al.²⁴⁷

5.7. Expansion of nepheline solid solution CEF model

The nepheline solid solution CEF model was expanded to incorporate K, Ca, and Fe, which are elements known to go into solution with nepheline,^{5, 6, 248-253} in sublattice form:

Addition of the Ca_{0.5}Al⁺⁴ species allowed the necessary generation of the anorthite, CaAl₂Si₂O₈, endmember, which is stable in the Ca₂O-Al₂O₃-SiO₂ system.^{100, 254} For this endmember as well as for KAlSiO₄, Gibbs energies were available in the FToxid database of FactSage²⁵⁵ and thus were adopted as initial descriptions. As the MgAl₂Si₂O₈ endmember produced from the Mg_{0.5}Al⁺⁴ species is not stable in the MgO-Al₂O₃-SiO₂ system,²⁵⁶ the Gibbs energy of the stoichiometrically similar Mg₂Al₄Si₅O₁₈ compound from FToxid was used as the primary energetic function. No such Gibbs energy values were available for NaFeSiO₄, which necessitated conducting novel assessments of the NaAlSiO₄-NaFeSiO₄ and NaAlSiO₄-NaFeSi₂O₆ systems as part of the endmember optimization..

Li and B were not incorporated in the sublattice model as experimental studies have established that Li is not observed to go into solution in nepheline,^{6, 257-260} and B is unlikely to go into solution in a system composed of oxides common to HLW glass systems.^{259, 260} As summarized by Marcial et al²⁵⁹ and Pierce et al,³ possible explanations for the resistance of these elements to go into solution in nepheline is the preferred eucryptite crystal structure,²⁵⁸ and the interaction of Na and Al in nepheline is more energetically favored than between Na and B, which results in the formation of Na-[AlO4] and BO3 moieties at the expense of Na-[BO4] moieties.²⁶¹⁻²⁶³ While Li and B are not included in the nepheline model, the thermodynamic effect of Li and B on nepheline precipitating from the liquid phase are accounted for in computing equilibria through inclusion of pseudo-binary and - ternary systems containing Li₂O and B₂O₃ in the current database.

5.7.1. Assessment of NaAlSiO4-NaFeSiO4 and NaAlSiO4-NaFeSi2O6 systems

Experimental phase equilibria data reported in studies²⁵⁰⁻²⁵² were used to conduct assessments of the NaAlSiO4-NaFeSiO4 and NaAlSiO4-NaFeSi₂O₆ systems with the resulting diagrams displayed in Fig. 5.39 and Fig. 5.40, respectively. The calculated liquidus curve of each diagram agree well with measurements while the nepheline to carnegieite computed transition temperatures are somewhat elevated in comparison to measurements. Regardless, as discussed in Section 6.2, these assessments resulted in the nepheline model well representing data with for compositions containing Fe.

5.8. Conclusion

Assessments of major-minor oxide pseudo-binary systems were successfully completed thus expanding the database to include the oxides K₂O, Li₂O, CaO, MgO, Fe₂O₃, and FeO. Additionally, species were added to the first sublattice of the nepheline CEF

126

model to obtain endmembers representing solubility of K, Ca, Mg, and Fe in nepheline. The inclusion of Fe necessitated assessing the NaAlSiO4-NaFeSiO4 and NaAlSiO4-NaFeSi₂O₆ systems to obtain an accurate Gibbs energy description of the NaFeSiO4 nepheline model endmember. As the database now contains the HLW glass oxides identified by Li et al.⁸ to affect nepheline precipitation, experimental HLW glass data can now be used to validate the accuracy of database calculations.

5.9. Tables

Table 5.1. Previous assessments used as a bases for assessments conducted in this work

System	Previous assessment
K ₂ O-Al ₂ O ₃	Eriksson et al ⁸⁰
K ₂ O-SiO ₂	Zhang et al ⁸²
$K_2O-B_2O_3$	Kaplun & Meshalkin ²⁴²
CaO-Al ₂ O ₃	Hallstedt ²⁶⁴
CaO-SiO ₂	Eriksson et al ²⁶⁵
CaO-B ₂ O ₃	Yu et al ¹⁵⁸
Li ₂ O-Al ₂ O ₃	Kulkarni & Besmann ²⁶⁶
Li ₂ O-SiO ₂	Konar et al ²⁶⁷
Li ₂ O-B ₂ O ₃	Yu et al ¹⁶⁰
Fe ₂ O ₃ -Na ₂ O	Moosavi-Khoonsari & Jung ²²³
Fe ₂ O ₃ -Al ₂ O ₃	Dreval et al ²²²
Fe ₂ O ₃ -SiO ₂	Selleby ²²⁰
Fe ₂ O ₃ -B ₂ O ₃	Jakobsson et al ²⁴⁵
FeO-Na ₂ O	Moosavi-Khoonsari & Jung ²²³
FeO-Al ₂ O ₃	Dreval et al ²²²
FeO-SiO ₂	Fabrichnaya & Sundman ²²¹
FeO-B ₂ O ₃	Jakobsson et al ²⁴⁵
MgO-Al ₂ O ₃	Zienert & Fabrichnaya ²²⁴
MgO-SiO ₂	Fabrichnaya ²⁶⁸
MgO-B ₂ O ₃	Chen et al ¹⁶²

Table 5.2. TSPIL model parameters for assessments of the major-minor oxide, NaAlSiO₄- NaFeSiO₄, and NaAlSiO₄-NaFeSi₂O₆ systems

$$\begin{array}{l} \hline \text{Oxide liquid} \left(\text{Al}^{1-3}, \text{Na}^{-1}, \text{K}^{+1}, \text{Li}^{+1}, \text{Mg}^{+2}, \text{Ca}^{+2}, \text{Fe}^{+2} \right)_{\text{p}} \left(\text{AlO}_{2}^{-1}, \text{O}^{-2}, \text{SiO}_{4}^{4}, \text{BO}_{3}^{-3}, \text{B}_{3}\text{O}_{4,5}^{0}, \text{FeO}_{1,5}^{0}, \text{SiO}_{2}^{0} \right)_{\text{Q}} \\ \\ \circ & G_{\text{Feo}_{1,5}} = 0.5^{\circ} G_{\text{Fe}_{2}\text{O}_{3}(\text{L})} \\ \circ & G_{\text{Feo}_{1,5}} = 0.5^{\circ} G_{\text{Fe}_{2}\text{O}_{3}(\text{L})} \\ \circ & G_{\text{K}_{3}\text{O}_{2}} = 0.5^{\circ} G_{\text{K}_{2}\text{O}(1)} + 0.5^{\circ} G_{\text{Al}_{2}\text{O}_{3}(\text{L})} - 153287.55 - 16.7667 \\ \circ & G_{\text{K}_{3}\text{O}_{2}} = 0^{\circ} G_{\text{SiO}_{2}(\text{L})} + 2^{\circ} G_{\text{K}_{2}\text{O}(\text{L})} - 476973.24 - 31.7927 \\ \circ & G_{\text{K}_{3}\text{BO}_{3}} = 1.5^{\circ} G_{\text{B}_{2}\text{O}_{3}(\text{L})} \\ \circ & G_{\text{Feo}_{1,5}} = 0 \\ \circ & G_{\text{SiO}_{2}} = 0^{\circ} G_{\text{SiO}_{2}(\text{L})} \\ \circ & G_{\text{Feo}_{1,5}} = 0 \\ \circ & G_{\text{SiO}_{2}} = 0^{\circ} G_{\text{SiO}_{2}(\text{L})} \\ \circ & G_{\text{Li}_{2}\text{O}(\text{L})} + 0.5^{\circ} G_{\text{Al}_{2}\text{O}_{3}(\text{L})} - 77787.49 + 4.7027 \\ \circ & G_{\text{Li}_{2}\text{O}(\text{L})} \\ \circ & G_{\text{Li}_{2}\text{O}(\text{L})} = 0.5^{\circ} G_{\text{Li}_{2}\text{O}(\text{L})} + 0.5^{\circ} G_{\text{B}_{2}\text{O}_{3}(\text{L})} - 77787.49 + 4.7027 \\ \circ & G_{\text{Li}_{2}\text{O}(\text{L})} \\ \circ & G_{\text{Li}_{2}\text{O}(\text{L})} = 0^{\circ} G_{\text{Li}_{2}\text{O}(\text{L})} + 0.5^{\circ} G_{\text{B}_{2}\text{O}_{3}(\text{L})} - 185579.42 + 3.6137 \\ \circ & G_{\text{B}_{3}\text{O}_{3}} = 1.5^{\circ} G_{\text{B}_{2}\text{O}_{3}(\text{L}) \\ \circ & G_{\text{Feo}_{1,5}} = 0 \\ \circ & G_{\text{SiO}_{2}} = 0^{\circ} G_{\text{SiO}_{2}(\text{L}) \\ \circ & G_{\text{Feo}_{1,5}} = 0 \\ \circ & G_{\text{SiO}_{2}} = 0^{\circ} G_{\text{SiO}_{2}(\text{L}) \\ \circ & G_{\text{Feo}_{1,5}} = 0 \\ \circ & G_{\text{SiO}_{2}} = 2^{\circ} G_{\text{MgO}(\text{L}) \\ \circ & G_{\text{Si}_{2}} \text{O}_{2} = 2^{\circ} G_{\text{SiO}_{2}(\text{L}) \\ = 0^{\circ} G_{\text{Si}_{2}} \text{O}_{2} \text{O}_{$$


```
{}^{0}L_{\text{Ca}^{+2}:0^{-2},\text{SiO}_{2}^{0}} = -30622 - 12.2T
{}^{1}L_{\text{Ca}^{+2}:\text{O}^{-2},\text{SiO}_{2}^{0}} = -139424 + 67.4T
^{2}L_{\text{Ca}^{+2}:0^{-2},\text{SiO}_{2}^{0}} = -33547 + 22.5T
{}^{3}L_{\text{Ca}^{+2}:0^{-2},\text{SiO}_{2}^{0}} = -97015 + 24.6T
{}^{0}L_{Ca^{+2}:SiO_{4}^{-4},SiO_{2}^{0}} = 2 {}^{0}L_{Ca^{+2},O^{-2},SiO_{2}^{0}}
{}^{1}L_{Ca^{+2}:SiO_{4}^{-4},SiO_{2}^{0}} = 2 {}^{1}L_{Ca^{+2},O^{-2},SiO_{2}^{0}}
{}^{2}L_{Ca^{+2}:SiO_{4}^{-4},SiO_{2}^{0}} = 2 {}^{2}L_{Ca^{+2},O^{-2},SiO_{2}^{0}}
{}^{3}L_{Ca^{+2}:SiO_{4}^{-4},SiO_{2}^{0}} = 2 {}^{3}L_{Ca^{+2},O^{-2},SiO_{2}^{0}}
{}^{0}L_{\text{Ca}^{+2}:0^{-2},\text{SiO}_{4}^{-4}} = 41317
{}^{0}L_{Ca^{+2}:0^{-2},BO_{3}^{-3}} = 12758 - 11.1T
{}^{1}L_{\mathrm{Ca}^{+2}:\mathrm{O}^{-2},\mathrm{BO}_{3}^{-3}} = -32073 + 12T
{}^{2}L_{\text{Ca}^{+2}:0^{-2},\text{BO}_{3}^{-3}} = 35481
{}^{0}L_{\mathrm{Ca}^{+2}:0^{-2},\mathrm{B}_{3}0^{0}_{4.5}} = 187599 - 104.5T
{}^{1}L_{Ca^{+2}:O^{-2},B_{3}O_{4,5}^{0}} = 12513 + 103.5T
^{2}L_{\text{Ca}^{+2}:0^{-2},\text{B}_{3}0^{0}_{4,5}} = -151861
{}^{0}L_{\text{Ca}^{+2}:\text{BO}_{3}^{-3},\text{B}_{3}\text{O}_{4.5}^{0}} = -82869 - 125.8T
{}^{1}L_{\text{Ca}^{+2}:\text{BO}_{3}^{-3},\text{B}_{3}\text{O}_{4.5}^{0}} = -238727 + 87.1T
{}^{2}L_{\text{Ca}}{}^{+2}:BO_{3}^{-3},B_{3}O_{4.5}^{0} = 26206 + 39.3T
{}^{0}L_{\text{Fe}^{+2}:0^{-2},\text{SiO}_{2}^{0}} = -68426 + 60.8T
{}^{1}L_{\mathrm{Fe}^{+2}:\mathrm{O}^{-2},\mathrm{SiO}_{2}^{0}} = -118041 + 44.9T
^{2}L_{\mathrm{Fe}^{+2}:0^{-2},\mathrm{SiO}_{2}^{0}} = 82003
{}^{0}L_{\text{Fe}^{+2}:\text{SiO}_{4}^{-4},\text{SiO}_{2}^{0}} = 64793 - 25.1T
{}^{1}L_{\text{Fe}^{+2}:\text{SiO}_{4}^{-4},\text{SiO}_{2}^{0}} = -149655 + 79.2TT
^{2}L_{\mathrm{Fe}^{+2}:\mathrm{SiO}_{4}^{-4},\mathrm{SiO}_{2}^{0}} = 81725
{}^{0}L_{\mathrm{Fe}^{+2}:0^{-2},\mathrm{SiO}_{4}^{-4}} = 38191 - 5T
^{0}L_{Mg^{+2}:O^{-2},SiO_{2}^{0}} = 190605 - 93.04T
{}^{1}L_{Mg^{+2}:O^{-2},SiO_{2}^{0}} = -212.38
^{2}L_{\text{Mg}^{+2}:0^{-2},\text{SiO}_{2}^{0}} = 164928 - 54.98T
{}^{3}L_{Mg^{+2}:O^{-2},SiO_{2}^{0}} = -2500
{}^{0}L_{Mg^{+2}:SiO_{4}^{-4},SiO_{2}^{0}} = 2 {}^{0}L_{Mg^{+2}:O^{-2},SiO_{2}^{0}}
{}^{1}L_{Mg^{+2}:SiO_{4}^{-4},SiO_{2}^{0}} = 2 {}^{1}L_{Mg^{+2}:O^{-2},SiO_{2}^{0}}
^{2}L_{\text{Mg}^{+2}:\text{SiO}_{4}^{-4},\text{SiO}_{2}^{0}} = 2^{2}L_{\text{Mg}^{+2}:\text{O}^{-2},\text{SiO}_{2}^{0}}
{}^{3}L_{Mg^{+2}:SiO_{4}^{-4},SiO_{2}^{0}} = 2 {}^{3}L_{Mg^{+2}:O^{-2},SiO_{2}^{0}}
^{0}L_{\text{Fe}^{+2}:\text{FeO}_{1.5}^{0},\text{SiO}_{2}^{0}} = 80465 - 22.95T
{}^{1}L_{\text{Fe}^{+2}:\text{FeO}_{1.5}^{0},\text{SiO}_{2}^{0}} = 32129 - 19.24T
{}^{0}L_{\rm Mg^{+2}:AlO_2^{-1},O^{-2}} = -25000 - 15T
^{0}L_{Al^{+3},Mg^{+2}:AlO_{2}^{-1}} = -90000
{}^{0}L_{\rm Al^{+3},Mg^{+2}:AlO_2^{-1},O^{-2}} = -600000 - 3.5T
{}^{0}L_{\rm Mg^{+2}:O^{-2},B_{3}O_{4.5}^{0}} = 40014 - 26.67T
{}^{1}L_{\rm Mg^{+2}:0^{-2},B_{3}O_{4.5}^{0}} = -56390 + 5.1T
{}^{2}L_{\mathrm{Mg}^{+2}:0^{-2},\mathrm{B}_{3}0^{0}_{4.5}} = 6822.5
```


$$^{0} L_{Mg} + {}^{2}:BO_{3}^{-3}:B_{3}O_{4.5}^{0} = 75229 - 63.7T \\ ^{1} L_{Mg} + {}^{2}:BO_{3}^{-3}:B_{3}O_{4.5}^{0} = -143825 + 18.2T \\ ^{2} L_{Mg} + {}^{2}:BO_{3}^{-3}:B_{3}O_{4.5}^{0} = -10185 \\ ^{0} L_{Li} + {}^{1}:O^{-2}:BO_{3}^{-3} = -2209.8 \\ ^{2} L_{Li} + {}^{1}:O^{-2}:BO_{3}^{-3} = 19085 \\ ^{0} L_{Li} + {}^{1}:BO_{3}^{-3}:B_{3}O_{4.5}^{0} = -140554 - 52.9T \\ ^{1} L_{Li} + {}^{1}:BO_{3}^{-3}:B_{3}O_{4.5}^{0} = -31712 \\ ^{0} L_{Al} + {}^{3}:Li^{+1}:AIO_{2}^{-1} = -248420 + 101.4T \\ ^{1} L_{Al} + {}^{3}:Li^{+1}:AIO_{2}^{-1} = 61564 - 33.75T \\ ^{0} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} = -62724 + 9.65T \\ ^{1} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} = -30777 + 18.6T \\ ^{2} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} = -32475 + 11.8T \\ ^{0} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} = 2^{0} U_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} \\ ^{1} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} = 2^{0} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} \\ ^{1} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} = 2^{0} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} \\ ^{1} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} = 2^{0} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} \\ ^{1} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} = 2^{1} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} \\ ^{1} L_{Li} + {}^{1}:SO_{4}^{-4}:SIO_{2}^{0} = 2^{2} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} \\ ^{1} L_{Li} + {}^{1}:SO_{4}^{-4}:SIO_{2}^{0} = 2^{2} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} \\ ^{1} L_{Li} + {}^{1}:SO_{4}^{-4}:SIO_{2}^{0} = 2^{3} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} \\ ^{1} L_{Li} + {}^{1}:SO_{4}^{-4}:SIO_{2}^{0} = 2^{3} L_{Li} + {}^{1}:O^{-2}:SIO_{2}^{0} \\ ^{1} L_{K} + {}^{1}:BO_{3}^{-3}:B_{3}O_{4.5}^{0} = -18250 - 7.9T \\ ^{1} L_{K} + {}^{1}:BO_{3}^{-3}:B_{3}O_{4.5}^{0} = 31888 - 54.3T \\ U_{K} + {}^{1}:BO_{3}^{-3}:B_{3}O_{4.5}^{0} = 31888 - 54.3T \\ U_{Ai} + {}^{1}:SIO_{4}^{-4}:SIO_{2}^{0} = -37079 \\ U_{K} + {}^{1}:O^{-2}:SIO_{2}^{0} = -37079 \\ U_{K} + {}^{1}:SO_{4}^{-4}:SIO_{2}^{0} = 2^{0} L_{K} + {}^{1}:O^{-2}:SIO_{$$


```
{}^{0}L_{\rm Fe^{+2}:0^{-2},B_{3}O_{4.5}^{0}} = 53996 - 57T
{}^{1}L_{\mathrm{Fe}^{+2}:0^{-2},\mathrm{B}_{3}0^{0}_{4.5}} = -59726 - 45T
{}^{2}L_{\mathrm{Fe}^{+2}:0^{-2},\mathrm{B}_{3}0_{4.5}^{0}} = 21933 - 40T
{}^{0}L_{\text{Fe}^{+2}:\text{BO}_{3}^{-3},\text{B}_{3}\text{O}_{4.5}^{0}} = 50000
{}^{0}L_{\text{Na}^{+1}\text{Fe}^{+2}:0^{-2}} = -135623 - 27.8T
{}^{1}L_{\text{Na}^{+1},\text{Fe}^{+2};0^{-2}} = -17049 - 74.2T
{}^{2}L_{\text{Na}^{+1},\text{Fe}^{+2};0^{-2}} = 12019 - 76.3T
{}^{3}L_{\text{Na}^{+1},\text{Fe}^{+2}:0^{-2}} = -121399 + 26.5T
{}^{0}L_{\mathrm{Na}^{+1}:\mathrm{O}^{-2},\mathrm{FeO}^{0}_{1.5}} = -252281 + 66.4T
{}^{1}L_{\text{Na}^{+1}:0^{-2},\text{FeO}_{1.5}^{0}} = 102329 - 49.6T
^{2}L_{\text{Na}^{+1}:\text{O}^{-2},\text{FeO}_{1.5}^{0}} = 88294 - 44.1T
{}^{3}L_{\text{Na}^{+1}:0^{-2},\text{FeO}_{1.5}^{0}} = -52294.5 - 86.87
^{0}L_{Al^{+3},Fe^{+2}:AlO_{2}^{-1}} = 6.5T
{}^{0}L_{\rm Fe^{+2}:AlO_{2}^{-1},0^{-2}} = 3433.54 + 20T
{}^{1}L_{\mathrm{Fe}^{+2}:\mathrm{AlO}_{2}^{-1},0^{-2}} = 2677.85
{}^{0}L_{\text{Fe}^{+2}:\text{AlO}_{2}^{-1},\text{FeO}_{1.5}^{0}} = 25T
{}^{0}L_{Al^{+3}:AlO_{2}^{-1},FeO_{1.5}^{0}} = 20T
^{2}L_{\text{Fe}^{+2}:\text{Fe}O_{1.5}^{0}\text{SiO}_{2}^{0}} = 25259 - 6.59T
{}^{0}L_{Ca^{+2}:AlO_{2}^{-1},O^{-2}} = -55518 - 9.87T
{}^{1}L_{Ca^{+2}:AlO_{2}^{-1},O^{-2}} = 28481 - 5.69T
^{2}L_{\text{Ca}^{+2}:\text{AlO}_{2}^{-1},\text{O}^{-2}} = 32805.6 + 1.49T
^{0}L_{\text{Al}^{+3},\text{Ca}^{+2}:\text{AlO}_{2}^{-1}} = -46401 + 1.93T
{}^{1}L_{Al^{+3},Ca^{+2}:AlO_{2}^{-1}} = 1057
^{2}L_{Al^{+3},Ca^{+2}:AlO_{2}^{-1}} = 760
^{0}L_{\text{Na}^{+1}:\text{AlO}_{2}^{-1},\text{FeO}_{1.5}^{0}} = 77283 - 55.8T
{}^{1}L_{\text{Na}^{+1}:\text{AlO}_{2}^{-1},\text{FeO}_{1.5}^{0}} = 7231.2 + 14.94T
^{0}L_{\text{Na}^{+1}:\text{FeO}_{1.5}^{0},\text{SiO}_{2}^{0}} = 140367 - 93.36T
{}^{1}L_{\text{Na}^{+1}:\text{FeO}_{1.5}^{0},\text{SiO}_{2}^{0}} = 15T
{}^{0}L_{\text{Na}^{+1}:\text{SiO}_{4}^{-4},\text{FeO}_{1.5}^{0}} = -30T
```


Oxide	T range (K)	Gibbs energy f	functio	n (J/mol)				Reference
CaO(ℓ)	298-2845	-571766.658	T^0	348.735802	Т	573572.991	T^-1	Bale et al.43
		-535.615998	T^0.5	-17163131.3	T^-2	-58.7911706	Tln(T)	
	2845-3500	-596946.671	T^0	379.180084	Т	-62.76	Tln(T)	
$Fe_2O_3(\ell)$	298-700	-790405.918	T^0	837.082867	Т	0.01841615	T^2	"
		1573510	T^-1	-1.2042E-05	T^3	-143.718	Tln(T)	
	700-955	-1024615.17	T^0	4083.09189	Т	0.48202345	T^2	
		22374620	T^-1	-9.35382E-05	T^3	-638.059	Tln(T)	
	955-970	3270153331	T^0	-34689563	Т	-3454.0955	T^2	
		-3.97896E+11	T^-1	0.4437025	T^3	5041690	Tln(T)	
	970-1050	23618923.1	T^0	-239921.242	Т	-21.754045	T^2	
		-3228093000	T^-1	0.002566407	T^3	34422.16	Tln(T)	
	1050-1812	-725640.027	T^0	376.873946	Т	-0.02791235	T^2	
		-8342755	T^-1	2.06076E-06	T^3	-80.37801	Tln(T)	
	1812-4000	-821058.176	T^0	1018.03098	Т	-165	Tln(T)	
FeO(ℓ)	298-1644	-290958.454	T^0	-349.657168	Т	-0.01530403	T^2	Fabrichnaya ²⁶⁸
		1266650	T^-1	6003.60001	T^0.5	18.0244741	Tln(T)	
	1644-2000	-268094.665	T^0	398.288735	Т	-68.1992	Tln(T)	
K2O(ℓ)	298-1013	-359688.062	T^0	388.245328	Т	-0.008573	T^2	Bale et al.43
		295819.992	T^-1	-75.9470015	Tln(T)			
	1013-1300	-381763.356	T^0	616.548762	Т	-107.000001	Tln(T)	
$Li_2O(\ell)$	298-600	-582532.74	T^0	388.975332	Т	-0.011613776	T^2	"
		747837.604	T^-1	-64.0131075	Tln(T)			
	600-4000	-597700.724	T^0	642.231109	Т	-100.416	Tln(T)	
MgO(ℓ)	298-1700	-548234.128	T^0	275.724634	Т	-0.00232681	T^2	Fabrichnaya ²⁶⁸
		516900	T^-1	4.5043E-08	T^3	-47.4817	Tln(T)	
	1700-2450	-584295.443	T^0	506.068248	Т	0.0097344	T^2	
		8591550	T^-1	-8.60338E-07	T^3	-78.3772	Tln(T)	
	2450-3100	9111293.97	T^0	-42013.7634	Т	-1.30122485	T^2	
		-3240374160	T^-1	5.82626E-05	T^3	5298.548	Tln(T)	
	3100-5100	-631800.291	T^0	589.239565	Т	-84	Tln(T)	
FeAl ₂ O ₄ (ℓ)	298-600	-1597434.4	T^0	-158.38391	Т	-0.06747	T^2	This work
		938780	T^-1	1.42054E-05	T^3	-30.2989	Tln(T)	
	600-1500	-1614969.17	T^0	148.45157	Т	-0.0072257	T^2	
		2120700	T^-1	2.78532E-07	T^3	-79.0765	Tln(T)	
	1500-1912	-1662246.3	T^0	447.049802	Т	0.00709105	T^2	
		12366650	T^-1	-6.29402E-07	T^3	-118.8765	Tln(T)	
	1912-2327	29188458.9	T^0	-168924.873	Т	-6.9955295	T^2	
		-7988436200	T^-1	0.000410226	T^3	22024.361	Tln(T)	
	2327-6000	-1747285.82	T^0	780.905007	Т	-155.2825	Tln(T)	

Table 5.3. Gibbs energy functions of liquid oxides

Table 5.4. Solid solution model parameters assessed as part of expanded database

 β -Al₂O₃ (K₂O)₁[Al₂O₃]₁₁{Va, Na₂O, K₂O}₁ $^{0}G_{K_{2}Na_{2}Al_{22}O_{35}}=0$ $^{\circ}G_{\text{Na}_{2}\text{Al}_{2}\text{O}_{35}} = 2^{\circ}G_{\text{KAl}_{9}\text{O}_{14}(\text{K}_{2}\text{beta}_{3}\text{alumina})} + ^{\circ}G_{\text{K}_{2}\text{O}(\text{s})} + 2^{\circ}G_{\text{Al}_{2}\text{O}_{3}(\text{corundum})} - 50T$ ^o $G_{\text{Na}_2\text{Al}_{22}\text{O}_{34}} = 2^{\circ} G_{\text{KAl}_9\text{O}_{14}(\text{K}_{2}\text{beta}_{3}\text{alumina})} + 2^{\circ} G_{\text{Al}_2\text{O}_3(\text{corundum})}$ $^{0}L_{K_{2}0:Al_{2}0_{3}:Na_{2}0,Va,K_{2}0} = -650000 + 80T$ ${}^{1}L_{K_{2}O:Al_{2}O_{3}:Na_{2}O,Va,K_{2}O} = 55T$ Nepheline $((Na - Al)^{+4}, (K - Al)^{+4}, (Va - Si)^{+4}, (Na - Fe)^{+4}, (Ca_{0.5} - Al)^{+4}, (Mg_{0.5} - Ca_{0.5})^{+4}, (Mg_{0.5})^{+4}, (Mg_{0$ $Al)^{+4})_{8}[Si^{+4}]_{8}\{O^{-2}\}_{32}$ ^o $G_{K_8Al_8Si_8O_{32}} = 8^{\circ} G_{KAlSiO_4(hexagonal)} + 119480$ ${}^{o} G_{Na_{8}Fe_{8}Si_{8}O_{32}} = 4^{o} G_{Na_{2}O(\alpha)} + 4^{o} G_{Fe_{2}O_{3}(hematite)} + 8^{o} G_{SiO_{2}(high-cristobalite)} - 8 \cdot 10^{5}$ - 75.2*T* ^o $G_{Ca_4Al_8Si_8O_{32}} = 4^{\circ} G_{CaAl_2Si_2O_8(anorthite)} + 1.2 \cdot 10^5$ $^{\circ} G_{Mg_4Al_8Si_8O_{32}} = 2^{\circ} G_{Mg_2Al_4Si_5O_{18}(cordierite)} + 2.003 \cdot 10^6$ $^{0}L_{\text{NaAl}^{+4},\text{NaFe}^{+4}:\text{Si}^{+4}:\text{O}^{-2}} = -150000$ $^{0}L_{\text{VaSi}^{+4},\text{NaFe}^{+4};\text{Si}^{+4};\text{O}^{-2}} = -50000$ Carnegieite $((Na - Al)^{+4}, (K - Al)^{+4}, (Va - Si)^{+4}, (Na - Fe)^{+4}, (Ca_{0.5} - Al)^{+4})_{4}[Si^{+4}]_{4}\{O^{-2}\}_{16}$ ^o $G_{K_4Al_4Si_4O_{16}} = 4^{\circ} G_{KAlSiO_4(orthorhombic)} + 59740$ ^o $G_{\text{Na}_4\text{Fe}_4\text{Si}_4\text{O}_{16}} = 2^{\circ} G_{\text{Na}_2\text{O}(\alpha)} + 2^{\circ} G_{\text{Fe}_2\text{O}_3(\text{hematite})} + 4^{\circ} G_{\text{SiO}_2(\text{high-cristobalite})} - 369096$ - 84.8*T* ^o $G_{\text{Ca}_2\text{Al}_4\text{Si}_4\text{O}_{16}} = 2^{\text{o}} G_{\text{CaAl}_2\text{Si}_2\text{O}_8(\text{hexagonal})} + 6 \cdot 10^4$ Mg-Spinel^a $(Al^{+3}, Mg^{+2})_1 [Al^{+3}, Mg^{+2}, Va]_2 \{Mg^{+2}, Va\}_2 (0^{-2})_4$ $^{o}G_{Al_{3}Mg_{2}O_{4}^{+5}} = ^{o}G_{Mg-Spinel_{1}}$ ^o $G_{Al_3O_4^{+1}} = {}^o G_{Mg-Spinel_2}$ ^o $G_{AlMg_{A}O_{A}^{+3}} = {}^{o} G_{Mg-Spinel_{3}}$ $^{o} G_{AlMg_{2}O_{4}^{-1}} = ^{o} G_{Mg-Spinel_{4}}$ ^o $G_{\text{AlMg}_2\text{O}_4^{-1}} = {}^{\text{o}} G_{\text{Mg-Spinel}_5}$ $^{\circ}G_{AlO_{\star}^{-5}} = ^{\circ}G_{Mg-Spinel_{-6}}$ $^{\circ}G_{Al_2Mg_3O_4^{+4}} = ^{\circ}G_{Mg-Spinel_7}$ $^{\circ}G_{Al_2MgO_4} = ^{\circ}G_{Mg-Spinel_8}$ $^{o} G_{\mathrm{Mg}_{5}\mathrm{O}_{4}^{+2}} = ^{o} G_{\mathrm{Mg}-\mathrm{Spinel}_{9}}$ ${}^{\mathrm{o}} G_{\mathrm{Mg}_{2}\mathrm{O}_{4}^{-2}} = {}^{\mathrm{o}} G_{\mathrm{Mg-Spinel}_{10}}$ $^{o} G_{Mg_{3}O_{4}^{-2}} = ^{o} G_{Mg-Spinel_{11}}$ ${}^{o}G_{MgO_{4}^{-6}} = {}^{o}G_{Mg-Spinel_{12}}$ ${}^{0}L_{Al^{+3}\cdot Al^{+3}\cdot Va;Va;O^{-2}} = 64655 + 60.74T$ ¹ $L_{Al^{+3}:Al^{+3}:Va:Va:O^{-2}} = -79056 - 34.81T$ ${}^{2}L_{Al^{+3}:Al^{+3},Va:Va:O^{-2}} = -252333 - 110T$ ${}^{0}L_{\rm Mg^{+2}:Mg^{+2},Va:Mg^{+2}:O^{-2}} = 35000$ $^{0}L_{Mg^{+2}:Al^{+3}:Mg^{+2}:Mg^{+2}:O^{-2}} = -250000 - 50T$ ${}^{1}L_{Mg^{+2}:Al^{+3},Mg^{+2}:Mg^{+2}:O^{-2}} = -40T$

$$\begin{split} & \mathsf{Mg}\text{-Halite}^{a} (\mathsf{Al}^{+3}, \mathsf{Mg}^{+2}, \mathsf{Va})_{1}[\mathsf{O}^{-2}]_{1} \\ & \circ \mathsf{G}_{\mathsf{Al}\mathsf{O}\mathsf{O}} = \circ \mathsf{G}_{\mathsf{MgO}(\mathsf{S})} \\ & \circ \mathsf{G}_{\mathsf{O}\mathsf{O}\mathsf{C}^{2}} = 0 \\ & \circ \mathsf{D}_{\mathsf{Al}^{+3},\mathsf{Mg}^{+2},\mathsf{O}^{-2}} = 114145 - 20.537 \\ & ^{1}\mathsf{L}_{\mathsf{Al}^{+3},\mathsf{Mg}^{+2},\mathsf{O}^{-2}} = -84998 + 30.977 \\ & \circ \mathsf{D}_{\mathsf{Al}^{+3},\mathsf{Ng},\mathsf{O}^{-2}} = 1007 \\ & \mathsf{Wustie} (\mathsf{FeO}, \mathsf{Na}_{\mathsf{O}\mathsf{O}}) \\ & \circ \mathsf{G}_{\mathsf{FeO}} = \circ \mathsf{G}_{\mathsf{FeO}(\mathsf{S})} \\ & \circ \mathsf{G}_{\mathsf{Na}_{2}\mathsf{O}} = \circ \mathsf{G}_{\mathsf{Na}_{2}\mathsf{O}(\mathsf{C})} \\ & ^{11}\mathsf{q}_{\mathsf{FeO},\mathsf{Na}_{2}\mathsf{O}} = -114145 - 20.537 \\ & ^{31}\mathsf{q}_{\mathsf{FeO},\mathsf{Na}_{2}\mathsf{O}} = -35762.74 - 29.027 \\ & \mathsf{Fe-Corund_soln} (\mathsf{Al}^{+3},\mathsf{Fe}^{+3})_{2}[\mathsf{O}^{-2}]_{3} (adopted from Dreval et al.^{222}) \\ & ^{\circ}\mathsf{G}_{\mathsf{Al}_{2}\mathsf{O}_{3}} = \circ \mathsf{G}_{\mathsf{Ha}_{2}\mathsf{O}_{3}}(\mathsf{Fe-Corund_soln}) \\ & ^{\circ}\mathsf{G}_{\mathsf{FeO},\mathsf{O}_{3}} = \circ \mathsf{G}_{\mathsf{FeO},\mathsf{O}(\mathsf{Fe}-\mathsf{Corund_soln}) \\ & ^{\circ}\mathsf{G}_{\mathsf{FeO},\mathsf{O}_{3}} = \circ \mathsf{G}_{\mathsf{FeO},\mathsf{O}(\mathsf{Fe}-\mathsf{Corund_soln}) \\ & ^{\circ}\mathsf{G}_{\mathsf{FeO},\mathsf{O}_{3}} = \circ \mathsf{G}_{\mathsf{FeO},\mathsf{O}(\mathsf{Fe}^{-\mathsf{Corund_soln}}) \\ & ^{\circ}\mathsf{G}_{\mathsf{FeO},\mathsf{O}_{3}} = \circ \mathsf{G}_{\mathsf{FeO},\mathsf{O}(\mathsf{Fe}^{-\mathsf{Corund_soln}}) \\ & ^{\circ}\mathsf{G}_{\mathsf{FeO},\mathsf{O}_{3}} = \circ \mathsf{G}_{\mathsf{FeO},\mathsf{O}(\mathsf{Fe}^{-\mathsf{Corund_soln}}) \\ & ^{\circ}\mathsf{G}_{\mathsf{FeO},\mathsf{O}_{3}} = \circ \mathsf{G}_{\mathsf{FeO},\mathsf{O}(\mathsf{S}^{-\mathsf{FeO},\mathsf{Corund_soln}}) \\ & ^{\circ}\mathsf{G}_{\mathsf{FeO},\mathsf{O}^{-2}} = \mathsf{G}_{\mathsf{FeO},\mathsf{O}(\mathsf{S}^{-\mathsf{FeO},\mathsf{Corund_soln}}) \\ & ^{\circ}\mathsf{G}_{\mathsf{Al},\mathsf{O}^{+1}} = \mathsf{O}_{\mathsf{G}_{\mathsf{FeO},\mathsf{O}^{-1}} = 15000 - 337 \\ \\ & \mathsf{G}_{\mathsf{Al},\mathsf{O}^{+1}} = \circ \mathsf{G}_{\mathsf{Fe-Spinel},\mathsf{I}} \\ & ^{\circ}\mathsf{G}_{\mathsf{Ge},\mathsf{Al},\mathsf{O}^{+1}} = \circ \mathsf{G}_{\mathsf{Fe-Spinel},\mathsf{I}} \\ & ^{\circ}\mathsf{G}_{\mathsf{Fe},\mathsf{O},\mathsf{I}^{-1}} = \circ \mathsf{G}_{\mathsf{Fe-Spinel},\mathsf{I}} \\ \\ & ^{\circ}\mathsf{G}_{\mathsf{Fe},\mathsf{O},\mathsf{I}}^{-1} = \circ \mathsf{G}_{\mathsf{Fe-Spinel},\mathsf{I}} \\ \\ & ^{\circ}\mathsf{G}_{\mathsf{Fe},\mathsf{O},\mathsf{I}}^{-1} = \circ \mathsf{G}_{\mathsf{Fe-Spinel},\mathsf{I}} \\ \\ & ^{\circ}\mathsf{G}_{\mathsf{Fe},\mathsf{O},\mathsf{I}}^{-1} = \circ \mathsf{G}_{\mathsf{Fe-Spinel},\mathsf{I}} \\ \\ & ^{\circ}\mathsf{Fe},\mathsf{O},\mathsf{I}^{-2} = \mathsf{G}_{\mathsf{Fe-Spinel},\mathsf{I}} \\ \\ & ^{\circ}\mathsf{G}_{\mathsf{Fe},\mathsf{O},\mathsf{I}}^{-1} = \circ \mathsf{G}_{\mathsf{Fe-Spinel},\mathsf{I}} \\ \\ & ^{\circ}\mathsf{G}_{\mathsf{Fe},\mathsf{O},\mathsf{I}}^{-1} = \circ \mathsf{G}_{\mathsf{Fe-Spinel},\mathsf{I}} \\ \\ \\ & ^{\circ}\mathsf{G}_{\mathsf{Fe},\mathsf{I},\mathsf{I}}^{-1} = \circ \mathsf{G}_{\mathsf{Fe-Spinel$$

^a Endmember thermodynamic values defined in Table 5.5.

Table 5.5. Thermodynamic values for Fe-Spinel, Mg-Spinel, and halite solid solution endmembers

Solution endmember	$\Delta H_{298.15K}$ (J/mol)	$S_{298.15\mathrm{K}} (\mathrm{J/mol}\cdot\mathrm{K})$	C_p (J/mol·K)	T range (K)
^o G _{Fe-Spinel_1}	-2514574.965	-25.15006816	95.652585 +0.197310962 <i>T</i> -2854708/ <i>T</i> ² -0.000125863482 <i>T</i> ²	298-600
			$108.81885 \pm 0.0105/816/1 - 64004/1/1/^2 - 5.2124/E - 11^2$	600-1000
			$105.9/995 \pm 0.0210812501 \pm 0099201/1^2 \pm 2.480442E \pm 01^2$	1000-1500
			$225.0804 - 0.0218089921 - 3085 / 104 / 1^{-2} \pm 3.0849393E - 01^{-2}$ $280.3801 - 0.000505708T \pm 262005 / T^{2} + 2.0243E - 8T^{2}$	1300-2327
			280.2691 - 0.0003957981 + 20290571 - 2 + 2.0545E - 81 - 2 270 2102 - 0.000425243T + 4383200/TA2 + 3.2163E 8TA2	2327-3300
0.0	522040 0802	251 221 101	277.2192 - 0.0004252451 + 458520071 2 + 5.210512 - 81 2	3300-0000
⁶ G _{Fe-Spinel_2}	533049.9893	-351.221181	61.3802/3 ±0.092965197 -/46940/1^2 -3.23433/4E-31^2	298-600
			$85.909/3 \pm 0.052/205041 = 1928845/1^2 = 1.0/05501E = 51^2$ 100 16425 $\pm 0.010204015T = 2425105/T^2 = 0.27226E = 7T^2$	1000 1500
			$100.10425 \pm 0.0102049151 - 5455195/1 - 2 - 9.57520E - 71 - 2$ $120.062 - 0.004111825T - 13680875/T^{2} + 1.7864085E - 6T^{2}$	1500 2327
			-152,002 - 0.0041118551 - 1500087571 - 2 + 1.760470512 - 01 - 2	2327-3000
			-243.43539 +0.002978997 -1314525/T^2 -1.01715E-7T^2	3000-3300
			-238.08589 +0.002126215 <i>T</i> -21916000/ <i>T</i> ^2 -1.60815E-7 <i>T</i> ^2	3300-6000
⁰ GEo. Spinol 2	-1077687 507	-332 0854213	215 13502 -0 145010962 <i>T</i> -3412924/ <i>T</i> ^2 +0 000125863482 <i>T</i> ^2	298-600
"Fe-Spiller_3	1077007.507	552.005 1215	141.96875 +0.035721832 <i>T</i> +132839/ <i>T</i> ^2 +5.21247E-7 <i>T</i> ^2	600-1000
			144.80765 +0.031218744 <i>T</i> -168431/ <i>T</i> ^2 +2.486442E-6 <i>T</i> ^2	1000-1500
			85.1072 +0.074168994 <i>T</i> +30569472/ <i>T</i> ^2 -5.6849595E-6 <i>T</i> ^2	1500-2327
			30.4985 +0.052895798 <i>T</i> -6530537/ <i>T</i> ^2 -2.0343E-8 <i>T</i> ^2	2327-3300
			31.5684 +0.052725242 <i>T</i> -10650832/ <i>T</i> ^2 -3.2163E-8 <i>T</i> ^2	3300-6000
^o G _{Fe-Spinel_4}	-1149513.507	-304.8194213	215.13502 -0.145010962 <i>T</i> -3412924/ <i>T</i> ^2 +0.000125863482 <i>T</i> ^2	298-600
			141.96875 +0.035721832 <i>T</i> +132839/ <i>T</i> ^2 +5.21247E-7 <i>T</i> ^2	600-1000
			144.80765 +0.031218744 <i>T</i> -168431/ <i>T</i> ^2 +2.486442E-6 <i>T</i> ^2	1000-1500
			85.1072 +0.074168994 <i>T</i> +30569472/ <i>T</i> ^2 -5.6849595E-6 <i>T</i> ^2	1500-2327
			30.4985 +0.052895798 <i>T</i> -6530537/ <i>T</i> ^2 -2.0343E-8 <i>T</i> ^2	2327-3300
			31.5684 +0.052725242 <i>T</i> -10650832/ <i>T</i> ² -3.2163E-8 <i>T</i> ²	3300-6000
^o G _{Fe-Spinel_5}	-1954112.187	-114.414003	155.3938 +0.02615 <i>T</i> -3133816/ <i>T</i> ^2	298.15-6000
^o G _{Fe-Spinel_6}	-1950908.187	-87.14800298	155.3938 +0.02615 <i>T</i> -3133816/ <i>T</i> ^2	298.15-6000
$^{\rm o}$ $G_{\rm Fe-Spinel_7}$	-643216.3349	-147.7111075	124.9395 +0.011952256 <i>T</i> -2065200/ <i>T</i> ^2	298.15-3000
			160.5668	3000-6000
^o G _{Fe-Spinel_8}	-690042.3349	-120.4451075	124.9395 +0.011952256 <i>T</i> -2065200/ <i>T</i> ^2	298.15-3000
			160.5668	3000-6000

المتسارات

Solution endmember	ΔH _{298.15K} (J/mol)	S _{298.15K} (J/mol·K)	C_p (J/mol·K)	T range (K)
^o G _{Fe-Spinel_9}	-1022698.869	-205.9187505	174.9153 +0.0167331584 <i>T</i> -2891280/ <i>T</i> ^2	298.15-3000
			224.79352	3000-6000
0.0				
^o G _{Fe-Spinel_10}	-1116350.869	-151.3867505	174.9153 +0.0167331584 <i>T</i> -2891280/ <i>T</i> ^2	298.15-3000
^o G _{Fe-Spinel_11}	-1069524.869	-182.1527505	174.9153 +0.01673315847 -2891280/7*2	298.15-3000
			224.79352	3000-6000
^o G _{Fe-Spinel_12}	-1069524.869	-178.6527505	174.9153 +0.0167331584 <i>T</i> -2891280/ <i>T</i> ^2	298.15-3000
			224.79352	3000-6000
^o G _{Mg-Spinel_1}	-3587648.968	124.6958635	221.46229 +0.17691541 · T -4250476/T^2 -0.00011792133 · T^2 -592.398/T^0.5 +11689224/T^3	298.15-600
			294.62855 -0.003817385 · T -7796239/T^2 +7.420905E-6 · T^2 -592.398/T^0.5 +11689224/T^3	600-1000
			280.43405 +0.018698065 · T -6289889/T^2 -2.40507E-6 · T^2 -592.398/T^0.5 +11689224/T^3	1000-1500
			340.1345 -0.024252186 T -37027794/T^2 +5.7663315E-6 T^2 -592.398/T^0.5 +11689224/T^3	1500-2327
			394.7432 -0.00297899·T+72216.992/T*2 +1.01715E-7·T*2 -592.398/T*0.5 +11689224/T*3	2327-3097.91
			$441.418 - 0.0029/899 + T + 5041449/T^2 + 1.01715E - 7 + 7 + 7 + 7 + 7 + 7 + 7 + 101715E - 3506/672/T^3$	3097.91-3098
			400.4119 - 0.0029/8997 + 1314525/172 + 1.01/15E - 7.72	3098-3300
0.0	2444604 522	40.04545016	401.0624 -0.002126213·7 +21916000/7·2 +1.00813E-7·7·2	3300-6000
⁶ G _{Mg-Spinel_2}	-2444694.532	-48.84547816	95.652585 +0.19/310962·T -2854/08/T*2 -0.000125863482·T*2	298.18-600
			168.81885 ±0.016578167.1 =640047171^2 =5.21247E=7.172	600-1000
			$105.97995 \pm 0.0210812507 \pm 0099201772 \pm 2.480442E + 0.772$	1000-1500
			225.0804 - 0.0218087927 - 50857104772 + 5.08495952E - 0.172 280 2801 - 0.000505708. T + 262005/T^2 + 2.0242E 8.T^2	2327 3300
			260.2691 - 0.0003937981 + 20290371 2 + 2.0343E - 8 T 2 279 2192 _0 000425243 · T + 4383200/T 2 + 3 2163E - 8 · T 2	3300-6000
° C	2182220 076	24 74507520	279.2192.40.000423243.1 + 30320017.2 + 3.21032-0.1.2	208 15 600
UMg-Spinel_3	-3182239.070	54.74597529	$2/8./104 \pm 0.0521/5280^{-1} - 5556492/1/2 - 5.0059/258E - 5^{-1}/2 - 1164./50/1/0.5 \pm 25578446/1/5$ $303.10515.0.008070070.T.4720413/TA2 \pm 5.12101002E.6.TA2.1184.706/TA2.5 \pm 23278448/TA2$	298.13-000
			$505.10515 - 0.0080709797 - 4720415772 - 7.7456598E_7 T^2 - 1184.79677 0.5 + 23378448773$	1000-1500
			314 4886 -0 008878459·T -14062571/T^2 +1 94923452F-6·T^2 -1184 796/T^0 5 +23378448/T^3	1500-2327
			332.6915 -0.001787394· <i>T</i> -1695901.02/ <i>T</i> ^{^2} +6.1029E-8· <i>T</i> ^{^2} -1184.796/ <i>T</i> ^{^0} .5 +23378448/ <i>T</i> ^{^3}	2327-3097.91
			379.3663 -0.001787394· <i>T</i> +3273331/ <i>T</i> ^{^2} +6.1029E-8· <i>T</i> ^{^2} +1184.796/ <i>T</i> ^{^0} .5 -23378448/ <i>T</i> ^{^3}	3097.91-3098
			356.0289 -0.001787394· <i>T</i> +788715/ <i>T</i> ^2 +6.1029E-8· <i>T</i> ^2	3098-3300
			352.8192 -0.001275729·T+13149600/T^2 +9.6489E-8·T^2	3300-6000

Table 5.5 cont'd. Thermodynamic values for Fe-Spinel, Mg-Spinel, and halite solid solution endmembers

Table 5.5 cont'd. Thermodynamic values for Fe-Spinel, Mg-Spinel, and halite solid solution endmembers

Solution endmember	$\Delta H_{298.15K}$ (J/mol)	$S_{298.15\mathrm{K}} (\mathrm{J/mol}\cdot\mathrm{K})$	C_p (J/mol·K)	T range (K)
^o G _{Me-Spinel 4}	-1999165.072	-75.10001984	$\begin{array}{l} 152.9067 + 0.072568838 \cdot T - 2142724/T^2 - 4.46018778E - 5 \cdot T^2 - 592.398/T^{0.5} + 11689224/T^3 \\ 177.29545 + 0.012324573 \cdot T - 3324645/T^2 - 2.82113298E - 6 \cdot T^2 - 592.398/T^{0.5} + 11689224/T^3 \\ 180.13435 + 0.007821483 \cdot T - 3625915/T^2 - 8.5593798E - 7 \cdot T^2 - 592.398/T^{0.5} + 11689224/T^3 \\ 200.0345 - 0.006495267 \cdot T - 13871883/T^2 + 1.86786252E - 6 \cdot T^2 - 592.398/T^{0.5} + 11689224/T^3 \\ 218.2374 + 0.000595798 \cdot T - 1505213/T^2 - 2.0343E - 8 \cdot T^2 - 592.398/T^{0.5} + 11689224/T^3 \\ 229.9061 + 0.000595798 \cdot T - 262905/T^2 - 2.0343E - 8 \cdot T^2 \\ 230.976 + 0.000425243 \cdot T - 4383200/T^2 - 3.2163E - 8 \cdot T^2 \end{array}$	298.15-600 600-1000 1000-1500 1500-2327 2327-3098 3098-3300 3300-6000
^o G _{Me-Spinel 5}	-1911265.205	-36.96958691	$\begin{array}{l} 187.3899 + 0.072568838 \cdot T - 2142724/T^2 - 4.46018778E - 5 \cdot T^2 - 592.398/T^0.5 + 11689224/T^3 \\ 211.77865 + 0.012324573 \cdot T - 3324645/T^2 - 2.82113298E - 6 \cdot T^2 - 592.398/T^0.5 + 11689224/T^3 \\ 214.61755 + 0.007821483 \cdot T - 3625915/T^2 - 8.5593798E - 7 \cdot T^2 - 592.398/T^0.5 + 11689224/T^3 \\ 234.5177 - 0.006495267 \cdot T - 13871883/T^2 + 1.86786252E - 6 \cdot T^2 - 592.398/T^0.5 + 11689224/T^3 \\ 252.7206 + 0.000595798 \cdot T - 1505213/T^2 - 2.0343E - 8 \cdot T^2 - 592.398/T^0.5 + 11689224/T^3 \\ 299.3954 + 0.000595798 \cdot T + 3464019/T^2 - 2.0343E - 8 \cdot T^2 + 1777.194/T^0.5 - 35067672/T^3 \\ 264.3893 + 0.000595798 \cdot T - 262905/T^2 - 2.0343E - 8 \cdot T^2 \\ 265.4592 + 0.000425243 \cdot T - 4383200/T^2 - 3.2163E - 8 \cdot T^2 \end{array}$	298.15-600 600-1000 1000-1500 1500-2327 2327-3097.91 3097.91-3098 3098-3300 3300-6000
^o G _{Mg-Spinel 6}	-783191.2723	-236.8155685	$\begin{array}{l} 61.580195 + 0.09296439 \cdot T - 746956/T^2 - 5.25440298E - 5 \cdot T^2 \\ 85.96895 + 0.032720124 \cdot T - 1928877/T^2 - 1.07632848E - 5 \cdot T^2 \\ 100.16345 + 0.010204675 \cdot T - 3435227/T^2 - 9.3730998E - 7 \cdot T^2 \\ 120.0636 - 0.004112075 \cdot T - 13681195/T^2 + 1.78649052E - 6 \cdot T^2 \\ 138.2665 + 0.00297899 \cdot T - 1314525/T^2 - 1.01715E - 7 \cdot T^2 \\ 143.616 + 0.002126215 \cdot T - 21916000/T^2 - 1.60815E - 7 \cdot T^2 \end{array}$	298.15-600 600-1000 1000-1500 1500-2327 2327-3300 3300-6000
^o G _{Mg–Spinel 7}	-3375446.874	68.59365297	$\begin{array}{l} 250.08934 + 0.114544348 \cdot T - 3894484/T^2 - 7.729053E - 5 \cdot T^2 - 888.597/T^0.5 + 17533836/T^3 \\ 298.86685 - 0.005944182 \cdot T - 6258326/T^2 + 6.2709618E - 6 \cdot T^2 - 888.597/T^0.5 + 17533836/T^3 \\ 287.51125 + 0.012068178 \cdot T - 5053246/T^2 - 1.58981802E - 6 \cdot T^2 - 888.597/T^0.5 + 17533836/T^3 \\ 327.31155 - 0.016565322 \cdot T - 25545182/T^2 + 3.85778298E - 6 \cdot T^2 - 888.597/T^0.5 + 17533836/T^3 \\ 363.71735 - 0.002383192 \cdot T - 811842.02/T^2 + 8.1372E - 8 \cdot T^2 - 888.597/T^0.5 + 17533836/T^3 \\ 410.39215 - 0.002383192 \cdot T + 4157390/T^2 + 8.1372E - 8 \cdot T^2 - 1480.995/T^0.5 - 29223060/T^3 \\ 381.2204 - 0.002383192 \cdot T + 1051620/T^2 + 8.1372E - 8 \cdot T^2 \\ 376.9408 - 0.001700972 \cdot T + 17532800/T^2 + 1.28652E - 7 \cdot T^2 \\ \end{array}$	298.15-600 600-1000 1000-1500 1500-2327 2327-3097.91 3097.91-3098 3098-3300 3300-6000
° G _{Mg-Spinel_8}	-2362372.969	-67.25237216	$\begin{array}{l} 124.27964 + 0.1349399 \cdot T - 2498716/T^2 - 8.5232682E - 5 \cdot T^2 - 296.199/T^0.5 + 5844612/T^3 \\ 173.05715 + 0.01445137 \cdot T - 4862558/T^2 - 1.67119002E - 6 \cdot T^2 - 296.199/T^0.5 + 5844612/T^3 \\ 212.85745 - 0.01418213 \cdot T - 25354494/T^2 + 3.77641098E - 6 \cdot T^2 - 296.199/T^0.5 + 5844612/T^3 \\ 249.26325 - 621154/T^2 - 296.199/T^0.5 + 5844612/T^3 \\ 255.0976 \end{array}$	298.15-600 600-1500 1500-2327 2327-3098 3098-6000

Table 5.5 cont'd. Thermodynamic values for Fe-Spinel, Mg-Spinel, and halite solid solution endmembers

Solution endmember	$\Delta H_{298.15K}$ (J/mol)	$S_{298.15\mathrm{K}} (\mathrm{J/mol}\cdot\mathrm{K})$	C_p (J/mol·K)	T range (K)
° G _{Mg-Spinel_9}	-2970036.982	-21.35633531	$\begin{array}{l} 307.34345 - 0.010197776 \cdot T - 3182500/T^2 + 3.971076\text{E-6} \cdot T^2 - 1480.995/T^0.5 + 29223060/T^3 \\ 301.66565 - 0.001191596 \cdot T - 2579960/T^2 + 4.06860006\text{E-8} \cdot T^2 - 1480.995/T^0.5 + 29223060/T^3 \\ 301.66565 - 0.001191596 \cdot T - 2579960/T^2 + 4.0686\text{E-8} \cdot T^2 - 1480.995/T^0.5 + 29223060/T^3 \\ 348.34045 - 0.001191596 \cdot T + 2389272/T^2 + 4.0686\text{E-8} \cdot T^2 + 888.597/T^0.5 - 17533836/T^3 \\ 330.8374 - 0.001191596 \cdot T + 525810/T^2 + 4.0686\text{E-8} \cdot T^2 \\ 328.6976 - 0.000850486 \cdot T + 8766400/T^2 + 6.4326\text{E-8} \cdot T^2 \\ \end{array}$	298.15-1000 1000-2327 2327-3097.91 3097.91-3098 3098-3300 3300-6000
° G _{Mg-Spinel_10}	-1786962.977	-131.2023306	$\begin{array}{l} 181.53375 + 0.010197776 \cdot T - 1786732.02/T^{\Lambda}2 - 3.971076\text{E-}6 \cdot T^{\Lambda}2 - 888.597/T^{\Lambda}0.5 + 17533836/T^{\Lambda}3 \\ 187.21155 + 0.001191596 \cdot T - 2389272/T^{\Lambda}2 - 4.06860006\text{E-}8 \cdot T^{\Lambda}2 - 888.597/T^{\Lambda}0.5 + 17533836/T^{\Lambda}3 \\ 187.21155 + 0.001191596 \cdot T - 2389272/T^{\Lambda}2 - 4.0686\text{E-}8 \cdot T^{\Lambda}2 - 888.597/T^{\Lambda}0.5 + 17533836/T^{\Lambda}3 \\ 204.7146 + 0.001191596 \cdot T - 525810/T^{\Lambda}2 - 4.0686\text{E-}8 \cdot T^{\Lambda}2 \\ 206.8544 + 0.000850486 \cdot T - 8766400/T^{\Lambda}2 - 6.4326\text{E-}8 \cdot T^{\Lambda}2 \\ \end{array}$	298.15-1000 1000-2327 2327-3098 3098-3300 3300-6000
° G _{Mg-Spinel_11}	-1651271.011	-186.8748976	$\begin{array}{l} 216.01695 + 0.010197776 \cdot T - 1786732.02/T^{\Lambda}2 - 3.971076E - 6 \cdot T^{\Lambda}2 - 888.597/T^{\Lambda}0.5 + 17533836/T^{\Lambda}3 \\ 221.69475 + 0.001191596 \cdot T - 2389272/T^{\Lambda}2 - 4.06859988E - 8 \cdot T^{\Lambda}2 - 888.597/T^{\Lambda}0.5 + 17533836/T^{\Lambda}3 \\ 221.69475 + 0.001191596 \cdot T - 2389272/T^{\Lambda}2 - 4.0686E - 8 \cdot T^{\Lambda}2 - 888.597/T^{\Lambda}0.5 + 17533836/T^{\Lambda}3 \\ 268.36955 + 0.001191596 \cdot T + 2579960/T^{\Lambda}2 - 4.0686E - 8 \cdot T^{\Lambda}2 + 1480.995/T^{\Lambda}0.5 - 29223060/T^{\Lambda}3 \\ 239.1978 + 0.001191596 \cdot T - 525810/T^{\Lambda}2 - 4.0686E - 8 \cdot T^{\Lambda}2 \\ 241.3376 + 0.000850486 \cdot T - 8766400/T^{\Lambda}2 - 6.4326E - 8 \cdot T^{\Lambda}2 \\ \end{array}$	298.15-1000 1000-2327 2327-3097.91 3097.91-3098 3098-3300 3300-6000
^o G _{Mg-Spinel_12}	-523197.0863	-292.9178626	90.20725 +0.030593328 · T -390964/T^2 -1.1913228E-5 · T^2 -296.199/T^0.5 +5844612/T^3 107.24065 +0.003574788 · T -2198584/T^2 -1.22058E-7 · T^2 -296.199/T^0.5 +5844612/T^3 113.075 +0.003574788 · T -1577430/T^2 -1.22058E-7 · T^2 119.4944 +0.002551458 · T -26299200/T^2 -1.92978E-7 · T^2	298.15-1000 1000-3098 3098-3300 3300-6000
° G _{AlO}	-757139.0401	-78.15563114	33.740195 +0.06746995 · <i>T</i> -938781/ <i>T</i> ^{^2} -4.26163398E-5 · <i>T</i> ^{^2} 58.12895 +0.007225685 · <i>T</i> -2120702/ <i>T</i> ^{^2} -8.3559498E-7 · <i>T</i> ^{^2} 78.0291 -0.007091065 · <i>T</i> -12366670/ <i>T</i> ^{^2} +1.88820552E-6 · <i>T</i> ^{^2} 96.232	298.15-600 600-1500 1500-2327 2327-4000

Compound	T range (K)	Gibbs energy	function	on (J/mol)				Reference
Al ₂ Fe ₂ O ₆	298-1591	-2524091.23	T^0	1959.90518	Т	-0.001640856	T^2	Bale et al.43
		4719072.53	T^-1	-155785255	T^-2	-3313.54792	T^0.5	
		-299.877284	Tln(T)					
	1591-2500	-2523119.76	T^0	1971.4282	Т	4719072.53	T^-1	
		-155785255	T^-2	-3313.54792	T^0.5	-301.877282	Tln(T)	
$LiAl_5O_8(\beta)$	298-600	-4672667.02	T^0	1361.8075	Т	-0.1652665	T^2	Kulkarni et al ²⁶⁶
		2812550	T^-1	0.000033217	T^3	-207.034	Tln(T)	
	600-1500	-4716504.06	T^0	2128.89658	Т	-0.014656	T^2	
		5767350	T^-1	-1.60033E-06	T^3	-328.978	Tln(T)	
	1500-2173	-4834696.57	T^0	2875.39176	Т	0.021136	T^2	
		31382200	T^-1	-3.87017E-06	T^3	-428.478	Tln(T)	
	2173-3000	-5046138.41	T^0	3784.73347	Т	-529.695	Tln(T)	
$LiAl_5O_8(\alpha)$	298-600	-4667926.12	T^0	1358.80903	Т	-0.1652665	T^2	"
		2812550	T^-1	0.000033217	T^3	-207.034	Tln(T)	
	600-1500	-4711763.16	T^0	2125.89812	Т	-0.014656	T^2	
		5767350	T^-1	-1.60033E-06	T^3	-328.978	Tln(T)	
	1500-2173	-4829955.67	T^0	2872.3933	Т	0.021136	T^2	
	0170 0000	31382200	T^-1	-3.8/01/E-06	T^3	-428.478	$T\ln(T)$	
1.11.0	2173-3000	-5041397.51	1~0	3/81./3501	T	-529.695	Tln(T)	
$L_1AI_{11}O_{17}$	298-600	3998603.5	1^0	864.330/18	T	-0.18083655	T ²	"
	(00.1500	83/9050	1^-1 T^0	0.00003321/	1^3 T	-559.504	$T \ln(1)$	
	600-1500	3934/00.4		1031.418/	1 T^2	-0.030220	$1^{\prime}2$ Tlm(T)	
	1500 2172	2826572.05	T^0	-1.00055E-00	Т ⁻ 5 Т	-081.44784	T m(1)	
	1300-2173	26049700		2 97017E 06	1 T∧2	780 04785	$T^{1}Z$	
	2173 2327	36946700	T^0	-3.8/01/E-00 3287 25605	Т	-/80.94/85	Tm(1)	
	21/5-2527	5566500	T^_1	-882 165	Tln(T)	-0.01337	1 2	
	2327-3000	3190833.01	T^0	5182 35891	T T	-1107 087	$T\ln(T)$	
LisAlO4	298-600	-2495652.92	T^0	1432.7679	T	-0.0166935	T^2	"
		2797350	T^-1	-4.3805E-06	T^3	-225.405	Tln(T)	
	600-1500	-2504419.85	T^0	1586.17946	Т	0.013429	T^2	
		3388350	T^-1	-0.000011344	T^3	-249.793	Tln(T)	
	1500-3000	-2528058.32	T^0	1735.47842	Т	0.0205875	T^2	
		8511300	T^-1	-0.000011798	T^3	-269.693	Tln(T)	
Ca2Al2SiO7	298-698	-4031807.92	T^0	2584.76721	Т	2389233.03	T^-1	Bale et al.43
		-9107.01992	T^0.5	-79651965.6	T^-2	-373.087401	Tln(T)	
	698-1600	-3925619.73	T^0	1115.40557	Т	-0.184750001	T^2	
		-6256406.96	T^-1	2.44833E-05	T^3	-9107.01992	T^0.5	
		-79651965.6	T^-2	-151.347401	Tln(T)			
	1600-2500	-4018818.24	T^0	2573.29903	Т	2389233.03	T^-1	
		-9107.01992	T^0.5	-79651965.6	T^-2	-373.087401	Tln(T)	
CaAl ₂ B ₂ O ₈	298-1850	-4532261.43	T^0	2271.91585	Т	-0.020414504	T^2	"
		4192216.05	T^-1	-3849.16392	T^0.5	-85343739	T^-2	
		-343.576019	Tln(T)					
	1850-2327	-4598480.42	T^0	2831.251	Т	2504254.5	T^-1	
C D C (2)	200.004	-3849.16392	1^0.5	-85343739	T^-2	-418.123292	$T\ln(T)$	
$Ca_2B_2O_5(\beta)$	298-804	-28052/9.01	1^0 TA 1	1120.12627		-0.024053975	1^2	
	004 1050	22359/3.85	1/-1	-183.0193/5	$I\ln(1)$	0.00501006	T • 0	
	804-1850	-2816136.2	1/0 T1.(T)	1360.77442	1	-0.00501996	1^2	
$C_{\alpha} P \cap (\cdot)$	200 004	-218./44/5/	$T \ln(T)$	1114 40220	т	0.024052075	TA2	"
$Ca_2B_2O_5(\alpha)$	298-804	-28006//.01	1^U T^ 1	1114.40239	1 T1(T)	-0.024053975	172	
	201 1050	22337/3.83	1 -1 TA0	-103.0193/3	тш(1) т	0.00501007	т^3	
	004-1830	-2011334.2	1 U T1n(T)	1333.03034	1	-0.00301996	12	
		-218./44/3/	$1 \ln(1)$					

Table 5.6. Gibbs energy functions of stoichiometric solid oxides

Compound	T range (K)	Gibbs energy	function	on (J/mol)			Ret	ference
Ca ₂ B ₂ SiO ₇	298-2150	-3751833.86	T^0	1812.64691	Т	-0.020414504	T^2	Bale et al.43
		3517635.54	T^-1	-2761.17992	T^0.5	-80724903.6	T^-2	
		-278.838627	Tln(T)					
Ca ₂ Fe ₂ O ₅	298-1721	-2220525.65	T^0	1481.02667	Т	-0.002438372	T^2	"
		2399757.28	T^-1	-245.085491	Tln(T)			
Ca ₂ FeSi ₂ O ₇	298-2000	-3699969.78	T^0	1769.203	Т	7442145.23	T^-1	
		-177252552	T^-2	2190.09622	T^0.5	-295.2345	Tln(T)	
$Ca_2Mg_2Al_{28}O_{46}$	298-6000	-26665168	T^0	16992.8976	Т	28797841.1	T^-1	"
		-49830.4949	T^0.5	-990802974	T^-2	-2410.06599	Tln(T)	
Ca ₂ MgSi ₂ O ₇	298-2000	-3880436.17	T^0	2721.30231	T	-11755.076	T^0.5	
G G O ()	200 2500	6798413.33	T^-2	-387.063961	Tln(T)	510(05(04	T A A	
$Ca_2SiO_4(\gamma)$	298-2500	-2309/31.15	1/0	1/4/.5334		-5126356.04	1^-2	
C = C = C = C = C	200.1710	-813/.685/	1/0.5	-243.660206	$I \ln(1)$	2004/00.04	TA 1	
$Ca_2SiO_4(\beta)$	298-1/10	-2331645.86	1/0	13/1.8995/		3994699.94	1/-1 T1 (T)	
	1710 5000	-216246659	1^-2 T^0	-2807.60006	1/0.5 T	-210.488/64	$T \ln(1)$	
	1/10-5000	-2240145.80		949.08/103	1 T^0.5	160 499767	1^{-1} Tln(T)	
$C_{02}SiO_{1}(\alpha)$	208 5000	-210240039	T -2	-2807.00000	Т 0.5	-100.488707	T = 1	"
$Ca_2SIO_4(\alpha)$	298-3000	-216246659	T^_2	-2807 60006	T^0 5	-160 /88767	T = 1 $T \ln(T)$	
CarAlpOr	208-1814	-210240039	T^0	2110 24615	Т 0.5 Т	2890650.08	Th(1)	"
Ca3Al2O6	290-1014	-5021 50008	T^0 5	_110203331	т т^_2	-321 580002	T = 1 $T \ln(T)$	
CarAl ₂ Si ₂ O ₁₂	298-2000	-6785285.07	T^0.5	3898 74051	T -2	9443584 02	T^_1	"
0437112013012	290 2000	-8157 61994	T^0 5	-386551978	T^-2	-573 430421	Tln(T)	
Ca3B2O6	298-1850	-3522132.7	T^0	1441 32444	Т <u>2</u> Т	-0 021794993	T^2	"
0030200	290 1020	2723328.3	T^-1	-236.105452	Tln(T)	0.021791999	1 2	
Ca3Fe2Si3O12	298-3000	-5754773.02	T^0	5943.95922	T	0.0351255	T^2	"
		339450	T^-1	-29612	T^0.5	-809.24	Tln(T)	
Ca ₃ MgAl ₄ O ₁₀	298-6000	-6086252.2	T^0	3750.01087	Т	5892658.99	T^-1	"
		-9418.73984	T^0.5	-188824711	T^-2	-547.520926	Tln(T)	
Ca ₃ MgSi ₂ O ₈	298-2500	-4580726.46	T^0	3167.16334	Т	-13000	T^0.5	"
C C		57371666.7	T^-2	-453.62	Tln(T)			
Ca ₃ Si ₂ O ₇	298-5000	-4019610.62	T^0	2723.09959	Т	5329997.77	T^-1	"
		-8800.26331	T^0.5	-228931522	T^-2	-392.848756	Tln(T)	
Ca ₃ SiO ₅	298-2500	-2902196.94	T^0	1229.21802	Т	-2018.41164	T^0.5	"
		-209.98832	Tln(T)					
Ca ₅ SiO ₁₀ B ₂	298-6000	-5881683.16	T^0	2180.6406	Т	-0.0621015	T^2	
		3563085	T^-1	3.28278E-06	T^3	-361.427	Tln(T)	
	6000-6001	-5278637.24	T^0	2138.45428	Т	-397.36592	Tln(T)	
$Ca_{11}B_2Si_4O_{22}(\beta)$	298-1850	-12832553.9	T^0	8431.45955	Т	-0.021794993	T^2	"
		2723328.3	T^-1	-20505424.2	T^-2	-32550.7428	T^0.5	
	1050 0500	-1210.74628	Tln(T)		-			
	1850-2500	-12901259	1~0	9023.76125	T T	-20505424.2	T^-2	
G D G O ()	000 1510	-32550.7428	1~0.5	-1289.79633	Tln(T)	0.001504000	T 4 2	
$Ca_{11}B_2S_{14}O_{22}(\alpha)$	298-1/10	-12865042.9	1^0	6928.93073	T TA Q	-0.021/94993	T^2	
		18/02128.1	1^-1 T1 (T)	-864986635	1^-2	-11230.4003	1/0.5	
	1710 1950	-10/8.00051	Tin(1)	5240 00112	т	0.021704002	т^)	
	1/10-1830	-12323042.9		964096625		-0.021/94995	T^2	
		-878 060522	1^{-1} T $\ln(T)$	-004900000	1 -2	-11230.4003	1 0.5	
	1850-5000	-070.000322	тт <u>(</u> т) Т^0	5837 28781	т	15978700 8	T^_1	
	1050-5000	-12371740	T^_?	-11230 4003	T^0 5	-957 110560	T = 1 Tln(T)	
CaAl ₂ B ₂ O ₇	298-1850	-3806588 77	T^0	1895 23928	T 0.5	-0 020414504	T^?	"
	270 1050	3618643.06	T^-1	-3313,54792	T^0 5	-68180607 7	T^-?	
		-2.84.784848	Tln(T)	5515.54772	1 0.5	30100007.7	. 2	
	1850-2327	-3872807.76	T^0	2454,57443	Т	1930681.51	T^-1	
		-3313.54792	T^0.5	-68180607.7	T^-2	-359.332122	Tln(T)	

Table 5.6 cont'd. Gibbs energy functions of stoichiometric solid oxides

Compound	T range (K)	Gibbs energy	function	n (J/mol)				Reference
CaAl ₂ O ₄	298-1877	-2336571.1	T^0	1603.12059	Т	280400.007	T^-1	Bale et al.43
		-6676.39993	T^0.5	14256666.9	T^-2	-227.039999	Tln(T)	
CaAl ₂ SiO ₆	298-3000	-3265591.3	T^0	1841.0616	Т	-0.0013425	T^2	"
		2672000	T^-1	-160183333	T^-2	-27110	ln(T)	
		-280.08	Tln(T)					
CaAl ₄ O ₇	298-2038	-4097286.08	T^0	2253.36407	Т	6056300.04	T^-1	"
		-4088.79994	T^0.5	-251766670	T^-2	-337.980001	Tln(T)	
CaAl ₁₂ O ₁₉	298-2106	-10888743.9	T^0	6990.90794	Т	14073900.1	T^-1	"
		-21400.1207	T^0.5	-624501832	T^-2	-992.735002	Tln(T)	
CaB ₂ O ₄	298-1850	-2086008.3	T^0	795.281075	Т	-0.020414504	T^2	"
		1687961.55	T^-1	-129.765966	Tln(T)			
CaB ₂ Si ₂ O ₈	298-1000	-3802256.8	T^0	3309.42042	Т	-0.0905935	T^2	"
		-905700	T^-1	0.0000205	T^3	-20986.36	T^0.5	
		-425.295	Tln(T)					
CaB ₄ O ₇	298-1850	-3450249.48	T^0	1368.01928	Т	-0.040076014	T^2	
		3589271.4	T^-1	-214.770622	Tln(T)			
CaFe ₂ O ₄	298-2000	-1535407.08	T^0	1014.35	Т	-0.008	T^2	"
		909486	T^-1	-170.988	Tln(T)			
CaFe4O7	298-1498	-2388710.27	T^0	1956.491	Т	-0.0012193	T^2	
		3375926	T^-1	-2.4E-11	T^3	-325.8761	Tln(T)	
CaFeSi ₂ O ₆	298-3000	-2422037.82	T^0	2105.13531	Т	-0.007025	T^2	"
		-15395000	T^-1	797666667	T^-2	-93220	ln(T)	
		-309.3	Tln(T)					
CaMg ₂ Al ₁₆ O ₂₇	298-6000	-15701036.8	T^0	10016.4718	Т	16640179.1	T^-1	
		-29413.5914	T^0.5	-564556197	T^-2	-1421.16153	Tln(T)	
CaMgO ₂	298-1800	-1278690	T^0	601.39896	Т	-0.00382836	T^2	"
		912112	T^-1	-97.82192	Tln(T)			
	1800-1801	-1289066.96	T^0	699.638426	Т	-111.04098	Tln(T)	
CaMgS12O6	298-2000	-3254230.63	T^0	2117.64351	Т	3582986.6	T^-1	
C O	200 2045	-6419.72408	1~0.5	-153639590	T^-2	-305.413331	Tln(1)	
CaO	298-2845	-651262.658	T^0	3/6.6/6564	T TA A	5/35/2.991	1 ⁻¹	
	2045 2500	-535.615998	1/0.5	-1/163131.3	1^-2	-58./911/06	$I \ln(1)$	
C OM OS'O	2845-3500	-6/6442.6/1	1^0 TA0	407.120846	I T	-62.76	$I \ln(1)$	"
CaOMgOS1O ₂	298-2000	-22/2506.1	1^0 T^0 5	1593.2697		389854.504	1/-1 T1 (T)	
$C_{-}S_{-}^{i}O_{-}(0)$	208 2000	-61/0.96403	1^0.5 T^0	3880981.33	1^-2 T	-226.34225	$T \ln(1)$	"
$CaSiO_3(p)$	298-2000	-1664832.94		1013.060//		18296/3.99	1^{-1}	
	2000 2002	-2/01.1/992	T^0.5	-60/24905.0	Т`-2 Т	-149.0/2001	TIm(T)	
$C_{2}S(O_{2}(x))$	2000-2002	-1/19340.53	T^0	939.109343	I Т	-140.44	T m(1)	"
$CaSIO_3(\alpha)$	296-1615	-100/858.05	T^0	927.915022		2928/9/.49	1^{-1}	
	1012 1015	-1008.92/99	T^0.5	-130/89139	Т`-2 Т	-141.13011	TIn(T)	
Fo(baa)	208 1811	-1/09801.48	T^0	932.40428	I T	-140.44	T m(1)	"
re(bee)	290-1011	77358 5	T^ 1	5 80260E 08	1 T^3	-0.00439732	$1 \ 2$ Tln(T)	
	1011 1017	77556.5	T^0	-3.89209E-08	Т Э Т	-25.5145	TIII(T)	
Fee Al SizOre	208 1500	-24287.8308 8780752 A	T^0	298.708000 5043 87601	т	24702746 5	T = 1	
1°C2A14515018	298-1500	-2066 048	T^0 5	-1201307815	т т^_2	-785 40228	T = 1 T = 1	
FeaOa	298-2500	-2000.048	T^0	828 050052	Т -2 Т	1453820	T [^] -1	"
10203	290 2300	-137 00893	Tln(T)	020.030032	1	1155620		
Fe2B2O5	298-1192	-1928880.4	T^0	804.103973	Т	-0.033722304	T^2	This work
		2177856.05	T^-1	2728.60654	T^0.5	-151.016768	Tln(T)	
	1192-1644	-2014555.9	T^0	183.321546	Т	-0.03060806	T^2	
		2533299.99	T^-1	12007.2	T^0.5	-91.7304118	Tln(T)	
	1644-2000	-1968828.32	T^0	1679.21335	Т	-264.17776	Tln(T)	

Table 5.6 cont'd. Gibbs energy functions of stoichiometric solid oxides

Compound	T range	Gibbs energy	Reference					
Fe ₂ B ₂ O ₆	298-1192	-2121831.79	T^0	2293.5289	Т	-0.003114244	T^2	This work
		1098376.05	T^-1	-9278.59349	T^0.5	-324.074647	Tln(T	
	1192-2000	-2207507.28	T^0	1672.74647	Т	1453820	T^-1	
		-264.78829	Tln(T					
	2000-2500	-2207507.28	T^0	1672.74647	Т	1453820	T^-1	
		-264.78829	Tln(T					
Fe ₂ SiO ₄	298-1500	-1542696.95	T^0	1048.25766	Т	0.004404	T^2	Fabrichnaya &
		1944500	T^-1	-4.11833E-	T^3	-176.02	Tln(T	Sundman ²²¹
Fe ₃ Al ₂ Si ₃ O ₁	298-3000	-4733460.21	T^0	4833.14609	Т	0.04425	T^2	Bale et al.43
		-7290000	T^-1	-0.0000026	T^3	-149600	ln(T)	
		-713	Tln(T					
Fe ₃ Ca ₂ O ₅	298-3172	-2189313.8	T^0	1468.7848	Т	-0.0149906	T^2	"
		1357103.4	T^-1	-4.8E-11	T^3	-250.07292	Tln(T	
	3172-6000	-719178.56	T^0	-3165.29991	Т	-0.10332293	T^2	
		-696808600	T^-1	2.34239E-06	T^3	307.6742	Tln(T	
	6000-6001	-2879521.59	T^0	3361.30778	Т	-464.95717	Tln(T	
Fe ₃ O ₄	298-848	-1200277.81	T^0	1282.9585	Т	-0.019017282	T^2	"
		3621668.52	T^-1	3.9679E-05	T^3	-3.1046E-08	T^4	
	0.40 1070	-110/26059	T^-2	-207.93083	Tln(T	2 (21 (() 52	T 4 1	
	848-1870	-1186819.15	T^0	1260.56231	T TI (T	3621668.52	1~-1	
E D O	200 1102	-110/26059	T^-2	-207.93083	Tin(T	0.004029424	TA 2	771 1
Fe ₆ B ₂ O ₉	298-1192	-3241380.37		-318.043/09	1 T^0 5	-0.094938424	1^{-2} Tlm(T	This Work
	1102 1644	/244430.04	1~-1 T^0	20/43.0000	1/0.5 T	-/8.9188/19	1 In(1 T^2	
	1192-1044	-332/030.00		-1139.4282	1 T^0 5	-0.09182418	1^{-2} Tln(T	
	1644 2000	2120272 22	T^-1 T^0	2248 24722	T 0.5	-19.0323134	$T \ln(T)$	
FecBaO12	208-1102	-3189875.55	T^0	3038 64840	Т	-0.00311/22/4	T m(1	"
1°C6D2O12	298-1192	4006016.05	T^_1	-9278 59349	T^0 5	-598 092507	T_{1}^{T}	
	1192-2000	-3921195	T^0	3317 86606	Т 0.5 Т	4361460	T III(1 T^_1	
	1192 2000	-538 80615	Tln(T	5517.00000	1	1501100	1 1	
	2000-2500	-3921195	T^0	3317 86606	т	4361460	T^-1	
	2000 2000	-538.80615	Tln(T	5517.00000	1	1501100	1 1	
FeO	298-1644	-322147.542	T^0	-330.687435	Т	-0.01530403	T^2	Bale et al.43
		1266650	T^-1	6003.60001	T^0.5	18.0244741	Tln(T	
	1644-2000	-299283.753	T^0	417.258468	Т	-68.1992	Tln(T	
FeB4O7	298-1192	-2850138.18	T^0	2600.27025	Т	-0.021532518	T^2	This work
		555762.105	T^-1	-12553.587	T^0.5	-356.106959	Tln(T	
	1192-1644	-3021489.16	T^0	1358.7054	Т	-0.01530403	T^2	
		1266650	T^-1	6003.60001	T^0.5	-237.534246	Tln(T	
	1644-2000	-2998625.37	T^0	2106.6513	Т	-323.75792	Tln(T	
FeSiO ₃	298-2500	-1237141.38	T^0	555.709899	Т	-0.0076095	T^2	Fabrichnaya &
		-4170800	T^-1	9390.4	ln(T)	-152870833	T^-2	Sundman ²²¹
		-110.148	Tln(T					
$K_2B_4O_7$	298-1088	-1312385.63	T^0	-8206.01151	Т	-0.087092749	T^2	Bale et al.43
		-21301951.1	T^-1	-704021.751	ln(T)	187179.694	T^0.5	
		709.373468	Tln(T					
	1088-1500	2690647.79	Τ^0	-5095.3387	Т	-138620093	T^-1	
W D C	200 1000	-1509731.11	ln(T)	229304.079	T^0.5	296.804103	Tln(T	
$K_2B_6O_{10}$	298-1000	-5353593	T^0	5916.83097	T	-0.050323691	T^2	
		5970459.59	1^-1	229295.91	$\ln(T)$	-/5/41.4515	1^0.5	
	1000 2000	-693.759394	Tin(T	((01(774	T	550504644	TA 1	
	1000-2000	-30517957.9	1.0	66016.774		550584644	1^-1	
		692/26/.4	ln(T)	52.476067	1^1.5	-1385086.34	1^0.5	
		-6/81.52311	$I \ln(1)$					

Table 5.6 cont'd. Gibbs energy functions of stoichiometric solid oxides

Compound	T range (K)	Gibbs energy	function	n (J/mol)				Reference
$K_2B_8O_{13}$	298-700	-6024133.19	T^0	1275.39693	Т	-0.182505684	T^2	Bale et al. ⁴³
		129639.412	T^-1	-625.163786	ln(T)	-217.500496	Tln(T)	
	700-1130	-68795815.6	T^0	251889.458	Т	1.60695191	T^2	
		888238198	T^-1	19652003.1	ln(T)	-4931793.53	T^0.5	
		-24873.5593	Tln(T)					
	1130-2000	3624106.88	T^0	-3570.13324	Т	-239063954	T^-1	
		-2283148.44	ln(T)	298614.88	T^0.5	11.0158607	Tln(T)	
K_2O	298-1013	-386888.05	T^0	415.096273	Т	-0.008573	T^2	"
		295819.992	T^-1	-75.9470015	Tln(T)			
	1013-1300	-408963.344	T^0	643.399707	Т	-107.000001	Tln(T)	
$K_2Si_2O_5(\gamma)$	298-1318	-2612211.83	T^0	1476.0817	Т	7396700	T^-1	
		-381535000	T^-2	-240.72	Tln(T)			
$K_2Si_2O_5(\beta)$	298-1318	-2610998.47	T^0	1473.70256	Т	7396700	T^-1	
		-381535000	T^-2	-240.72	Tln(T)			
$K_2Si_2O_5(\alpha)$	298-1318	-2609408.55	T^0	1471.86875	Т	7396700	T^-1	
		-381535000	T^-2	-240.72	Tln(T)			
$K_2Si_4O_9(\beta)$	298-373	-4499888.98	T^0	2555.94959	Т	10943384	T^-1	"
		-545391123	T^-2	-1922.20799	T^0.5	-400.743984	Tln(T)	
	373-865	-4500085.06	T^0	2558.0503	Т	-0.008440022	T^2	
		10943384	T^-1	1.50709E-05	T^3	-545391123	T^-2	
		-1.00917E-08	T^4	-1922.20799	T^0.5	-400.743984	Tln(T)	
	865-1038	-4499430.31	T^0	2446.78229	Т	-0.00809604	T^2	
		-391.37136	Tln(T)					
$K_2Si_4O_9(\alpha)$	298-373	-4496677.2	T^0	2552.23655	Т	10943384	T^-1	
		-545391123	T^-2	-1922.20799	T^0.5	-400.743984	Tln(T)	
	373-865	-4496873.28	T^0	2554.33725	Т	-0.008440022	T^2	
		10943384	T^-1	1.50709E-05	T^3	-545391123	T^-2	
		-1.00917E-08	T^4	-1922.20799	T^0.5	-400.743984	Tln(T)	
	865-1038	-4496218.53	T^0	2443.06925	Т	-0.00809604	T^2	
		-391.37136	Tln(T)					
K ₂ SiO ₃	298-1249	-1594048.44	T^0	671.804505	Т	-0.024405272	T^2	"
		707723.6	T^-1	-118.900912	Tln(T)			
$K_4B_2O_5$	298-1013	-2459271.42	T^0	2295.67139	Т	-0.020260244	T^2	This work
		236196.038	T^-1	-9278.59349	T^0.5	-338.95972	Tln(T)	
	1013-1192	-2503422	T^0	2752.27826	Т	-0.003114244	T^2	
		-355443.946	T^-1	-9278.59349	T^0.5	-401.065718	Tln(T)	
	1192-1300	-2589097.5	T^0	2131.49583	Т	-341.779362	Tln(T)	
	1300-2000	-2589097.5	T^0	2131.49583	Т	-341.779362	Tln(T)	
$K_4B_6O_{11}$	298-1013	-5303261.12	T^0	5226.62913	Т	-0.026488732	T^2	"
		-474691.854	T^-1	-27835.7805	T^0.5	-713.091153	Tln(T)	
	1013-1192	-5347411.71	T^0	5683.236	Т	-0.009342731	T^2	
		-1066331.84	T^-1	-27835.7805	T^0.5	-775.197152	Tln(T)	
	1192-1300	-5604438.19	T^0	3820.88872	Т	-597.338082	Tln(T)	
	1300-2000	-5604438.19	T^0	3820.88872	Т	-597.338082	Tln(T)	
K4SiO4	298-1185	-2155463.08	T^0	1366.21789	Т	-0.017146	T^2	Bale et al.43
		2364981.98	T^-1	-961.103996	T^0.5	-81928061.6	T^-2	
		-231.905995	Tln(T)		_			
$K_6B_2O_6$	298-1013	-2906159.47	T^0	2710.76766	Т	-0.028833244	T^2	This work
		532016.03	T^-1	-9278.59349	T^0.5	-414.906721	Tln(T)	
	1013-1192	-2972385.35	T^0	3395.67797	Т	-0.003114244	T^2	
		-355443.946	T^-1	-9278.59349	T^0.5	-508.065719	Tln(T)	
	1192-1300	-3058060.84	T^0	2774.89554	Т	-448.779363	Tln(T)	
	1300-2000	-3058060.84	T^0	2774.89554	Т	-448.779363	Tln(T)	

Table 5.6 cont'd. Gibbs energy functions of stoichiometric solid oxides

Compound	T range (K)	Gibbs energy	v functio	on (J/mol)				Reference
K10B38O62	298-1013	-28108534.3	T^0	29919.5794	Т	-0.102035632	T^2	This work
		-5274335.02	T^-1	-176293.276	T^0.5	-3933.98362	Tln(T)	
	1013-1192	-28218910.8	T^0	31061.0966	Т	-0.059170632	T^2	
		-6753434.98	T^-1	-176293.276	T^0.5	-4089.24862	Tln(T)	
	1192-1300	-29846745.2	T^0	19266.2305	Т	-2962.80784	Tln(T)	
	1300-2000	-29846745.2	T^0	19266.2305	Т	-2962.80784	Tln(T)	
$K_2B_{10}O_{16}$	298-723	-7129125.76	T^0	8117.69883	Т	-8.57E-03	T^2	"
		295819.992	T^-1	-48539.5078	T^0.5	-149240658	T^-2	
		-1058.09916	Tln(T)					
	723-1013	-7541347.36	T^0	4685.81754	Т	-8.57E-03	T^2	
		295819.992	T^-1	-724.467001	Tln(T)			
	1013-1300	-7563422.66	T^0	4914.12098	Т	-755.520001	Tln(T)	
	1300-2000	-7563422.66	T^0	4914.12098	Т	-755.520001	Tln(T)	
$KAlO_2(\beta)$	298-810	-1167128.76	T^0	399.063604	Т	-0.0348505	T^2	Bale et al.43
		486065.991	T^-1	4.37928E-06	T^3	-68.6114997	Tln(T)	
	810-2600	-1170574.83	T^0	539.995886	Т	-0.006	T^2	
		-91.9700019	Tln(T)					
$KAlO_2(\alpha)$	298-810	-1165833.76	T^0	397.464838	Т	-0.0348505	T^2	"
		486065.991	T^-1	4.37928E-06	T^3	-68.6114997	Tln(T)	
	810-2600	-1169279.83	T^0	538.397121	Т	-0.006	T^2	
		-91.9700019	Tln(T)					
KAlSi ₂ O ₆	298-850	-3118627.78	T^0	979.620715	Т	-0.14578413	T^2	"
		3928600.07	T^-1	7.16068E-05	T^3	-2.27069E-08	T^4	
		-159866672	T^-2	-160.616986	Tln(T)			
	850-918	13927105.2	T^0	-467460.634	Т	-137.657668	T^2	
		3928600.62	T^-1	0.053260117	T^3	-1.03146E-05	T^4	
		-159866672	T^-2	78882.326	Tln(T)			
	918-2000	-3130719.74	T^0	1450.55472	Т	-0.000733725	T^2	
		3191190.56	T^-1	-240.867967	Tln(T)			
KAlSi ₃ O ₈ (Microcline)	298-1473	-4047500.24	T^0	2609.56921	Т	6018626.05	T^-1	"
		-7764.18002	T^0.5	-306070911	T^-2	-381.372311	Tln(T)	
KAlSi ₃ O ₈ (K-Feldspar)	298-1436	-3946203.49	T^0	4998.75393	Т	0.078664999	T^2	
		4208273.06	T^-1	-5.795E-06	T^3	-27089.6795	T^0.5	
		-306070911	T^-2	-664.355227	Tln(T)			
	1436-1473	-4036421.72	T^0	2594.5574	Т	6018626.05	T^-1	
		-7764.18002	T^0.5	-306070911	T^-2	-381.372311	Tln(T)	
KAlSi ₃ O ₈ (Sanidine)	298-1473	-4036421.59	T^0	2594.55721	Т	6018626.05	T^-1	"
		-7764.18002	T^0.5	-306070911	T^-2	-381.372311	Tln(T)	
KBO ₂	298-1200	-1349368.6	T^0	4790.13635	Т	3146492.37	T^-1	"
		144157.511	ln(T)	6.18454342	T^1.5	-57630.7431	T^0.5	
		-568.801196	Tln(T)					
	1200-2000	-850723.573	T^0	1114.4129	Т	-11189169.9	T^-1	
		-19840.6711	ln(T)	-5879.89178	T^0.5	-151.396955	Tln(T)	
	2000-2001	-981563.544	T^0	427.47242	Т	-80	Tln(T)	
Li ₂ O	298-1843	-669227.483	T^0	188.985206	Т	-0.029072095	T^2	"
		1375700.37	T^-1	2.28388E-06	T^3	10344.7352	ln(T)	
		-34.2464863	Tln(T)					
	1843-3000	-655479.762	T^0	618.431454	Т	-0.003136125	T^2	
		7107264.87	T^-1	-92.2890378	Tln(T)			

Table 5.6 cont'd. Gibbs energy functions of stoichiometric solid oxides

Compound	T range	Gibbs energy	/ functi	on (J/mol)				Reference
Li ₃ NaSiO ₄	298-800	-2330306.34	T^0	979.793804	Т	-0.04827802	T^2	Bale et al.43
		1223625	T^-1	-160.34756	Tln(T			
	800-984	-2544140.13	T^0	4321.13926	Т	0.01967198	T^2	
		0.00013562	T^3	-1.27902E-	T^8	-640.64756	Tln(T	
	984-1358	-2416496.54	T^0	1003.47686	Т	-0.05240302	T^2	
		2063550.56	T^-1	0.0000035	T^3	15517.1028	ln(T)	
		-166.94756	Tln(T					
	1358-1450	-2432255.97	T^0	1177.08742	Т	-0.043125	T^2	
		2063550.56	T^-1	0.0000035	T^3	15517.1028	ln(T)	
		-191.152	Tln(T					
	1450-1550	-2432255.97	T^0	1177.08742	Т	-0.043125	T^2	
		2063550.56	T^-1	0.0000035	T^3	15517.1028	ln(T)	
		-191.152	Tln(T					
LiAlO ₂	298-500	-1199839.69	T^0	3.70264246	Т	-0.1704815	T^2	Kulkarni et
-		81050	T^-1	5.11098E-05	T^3	4.761	Tln(T	
	500-2058	-1224778.77	T^0	583.142878	Т	-0.006067	T^2	
		1254850	T^-1	-1.72667E-	T^3	-92.379	Tln(T	
	2058-3000	-1283289.96	T^0	916.091389	Т	-133.89	Tln(T	
$LiAlSi2O_6(\alpha -$	298-800	-3053631 59	T^0	2288 3625	Т	-0.01302	T^2	Bale et al ⁴³
Spodumene)	290 000	-11036	T^0 5	-312 1	Tln(T	0.01502	1 2	Duie et ui.
Spoulline)	800-1300	-3114254.6	T^0	1058 8021	T	-0.03888	т^2	
	000 1500	-172 1	Tln(T	1050.0021	1	0.05000	12	
LiAlSi2O4(B-	298-800	-2844710.96	T^0	-655 474357	Т	-0.044205	т^2	"
Spodumene)	290 000	-98140	ln(T)	31568	T^0 5	-8 586	Tln(T	
Spodumene)	800-1800	-3003877 77	T^0	1184 88345	т 0.5	-0.026035	т^?	
	800-1800	-105 2	T = 0 T = 1 n (T)	1104.00545	1	-0.020035	12	
LiAISiO.(B)	298-1300	-195.2		1201 34455	т	-0.00/3895	т^2	"
LIAI5I04(p)	276-1500	72 8	T^_1	-24000	ln(T)	-195 /	T_{n}	
$I_{iA} = I_{iA} = I$	208 1200	2064810.41	T^0	1200 86530	т Т	0.00/3805	T (1 T^2	"
LIAISIO4(u)	298-1200	-2004810.41	T 0 T 1	24000	ln(T)	105 4	$1 \ 2$ Tln(T)	
	1200 1000	2167001.62	T^0	788 230/88	т Т	-195.4	тл <u></u>	
	1200-1900	-210/991.02	T = 0 T = 1 n (T)	/00.239400	1	-0.023103	1 2	
Libo	208 1117	1050201 /3		201 077487	т		т∧2	"
LIBO2	290-1117	-1039201.43		2606 00186	ln(T)	-	$1 \ 2$ Tln(T)	
	1117 2000	1020568.2	T_0	3090.90180	т Т	-49.155885	тл)	
	1117-2000	-1039308.2		52 2220500	I Tln(T)	-	1 2	
	2000 2001	221516.460	T^-1 T^0	-33.3330399	т ш(т т	80	Tln(T	
LiF_O.	2000-2001	-961/08.08/		022 822558	Т	-00	T m(1	"
LIFCO ₂	298-1000	-/34301.311		121	I Tln(T)	-0.01023	1 2	
Mar Al SirOu	208 1750	-4210	T^0.5	-131	т	1158650	TA 1	"
WIg2A14515018	298-1750	-918/102.3/		21840.2	1 T^0 5	054 30	1^{-1}	
Ma B.O.	208 1800	2632036.35	T^0	-31049.2	T 0.5	-934.39	T (1 T^2	"
Wg2B2O5	298-1800	-2033930.33		15 204624	TA1 5	1 7201850	$1 \angle$ Tln(T)	
Masio	208 2000	2200752.81	T^0	-13.204024	т	0.000275	тм 1	Eshnishnarya ²⁶⁸
WIg25104	298-3000	-2209/33.81		1037.94373 5610	I $l_{m}(T)$	-0.009273	TA 2	Fabrichnaya
		1985500	1^{-1}	-3010	m(1)	-4/085555.5	1~-2	
Ma ALS: O	208 1700	-103.8		1577 16016	т	2250050.06	TA 1	D-1
Mg3Al2Sl3O12	298-1700	-0330492.32	T^0 5	43/7.40940	1 T1(T	2550950.00	11	Bale et al.
MARO	200 1050	-18108.2803	1.0.5	-040./199/8	Tin(T	0.071402201	TA2	
Mg3B2U6	298-1830	-5277099.98		403.183004		0.0/1492201	172 The (T	
	200 2000	1198527.63	1^-l	-16.3139691	1^1.5 T	-32./462529	I In(I	
WIg4AI10S12O23	298-2000	-13046195		8141.55575		16853810.6	1^-l	
N D O	200 1250	-004214821	T^-2	-21306.9236	1/0.5	-11/0.2/835		
MgB4O7	298-1350	-3286144.29	1/0	-213.489561		0.1218///14	1/2 T1/7	
	200 2000	3/52/7./18	1^-1	-27.2237978	1^1.5	108.311442	I In(T	
MgFe ₂ O ₄	298-2000	-1470263.4	1^0	/83.433428	Т	-0.01636	1^2	
		-134	Tln(T					

Table 5.6 cont'd. Gibbs energy functions of stoichiometric solid oxides

Compound	T range (K)	Gibbs energy	function	n (J/mol)				Reference
MgO	298-3098	-611541.379	T^0	420.064762	Т	310577.002	T^-1	Bale et al.43
C		-1184.796	T^0.5	-974102.005	T^-2	-61.1096505	Tln(T)	
	3098-3500	-662387.67	T^0	462.122764	Т	-66.944	Tln(T)	
MgSiO ₃ (β-Orthopyroxene)	298-3000	-1500335.8	T^0	968.55269	Т	-0.000941	T^2	Fabrichnaya ²⁶⁸
		675000	T^-1	-76866666.7	T^-2	-19380	ln(T)	2
		-144.45	Tln(T)				. ,	
MgSiO ₃ (α-Protopyroxene)	298-3000	-1496656.67	T^0	979.638578	Т	-0.0009493	T^2	"
		687130	T^-1	-76404833.3	T^-2	-20162.6	ln(T)	
		-145.79	Tln(T)					
Na ₂ Ca ₂ Si ₂ O ₇	298-3000	-3962397.3	T^0	2322.02358	Т	7105241.06	T^-1	Bale et al.43
		-1071.232	T^0.5	-353741637	T^-2	-372.927677	Tln(T)	
Na ₂ Ca ₂ Si ₃ O ₉	298-1300	-5051809.72	T^0	3272.3835	Т	6344864.46	T^-1	"
		-7921.39482	T^0.5	-289630273	T^-2	-479.281384	Tln(T)	
Na ₂ Ca ₃ Al ₁₆ O ₂₈	298-1405	-16850875.2	T^0	10531.0756	Т	-0.021932551	T^2	"
		17572856	T^-1	2.34792E-06	T^3	-28115.2314	T^0.5	
		-596934256	T^-2	-1482.74057	Tln(T)			
	1405-1500	-16873954.4	T^0	10799.7269	Т	17166171	T^-1	
		-28115.2314	T^0.5	-596934256	T^-2	-1521.12457	Tln(T)	
	1500-2327	-16873954.4	T^0	10799.7269	Т	17166171	T^-1	
		-28115.2314	T^0.5	-596934256	T^-2	-1521.12457	Tln(T)	
	2327-2845	-18197433.1	T^0	13144.0598	Т	1720718.97	T^-1	
		-1606.848	T^0.5	-51489393.9	T^-2	-1820.68551	Tln(T)	
	2845-3000	-18272973.1	T^0	13235.3926	Т	-1832.592	Tln(T)	
	3000-3500	-18272973.1	T^0	13235.3926	T	-1832.592	Tln(T)	
Na2Ca3Si6O16	298-1373	-8683657.85	T^0	4465.4541	T	-0.021932551	T^2	"
1 (42 0 430 10 0 10	270 1070	20001689.2	T^-1	2.34792E-06	T^3	-1009735517	T^-2	
		-1606.848	T^0.5	-694.82552	Tln(T)	1009/5551/	1 2	
Na2Ca8Al6O18	298-1405	-11127559.8	T^0	6687.4304	T	-0.021932551	T^2	"
	270 1100	10787313.5	T^-1	2.34792E-06	T^3	-14225.5717	T^0.5	
		-341846874	T^-2	-1001.60201	Tln(T)			
	1405-1500	-11150638.9	T^0	6956.08172	т(1) Т	10380628.5	T^-1	
	1.00 1000	-14225.5717	T^0.5	-341846874	T^-2	-1039.98601	Tln(T)	
	1500-2327	-11150638.9	T^0	6956.08172	T T	10380628.5	T^-1	
	1000 2027	-14225 5717	T^0 5	-341846874	T^-2	-1039 98601	Tln(T)	
	2327-2845	-11646943 5	T^0	7835 20656	т ²	4588583 93	T^-1	
	2027 2010	-4284 92799	T^0 5	-137305050	T^-2	-1152 32136	Tln(T)	
	2845-3000	-11848383 6	T^0	8078 76082	T Ž	-1184 072	Tln(T)	
	3000-3500	-11848383.6	T^0	8078 76082	Ť	-1184 072	Tln(T)	
Na2CaSi5O12	298-1123	-6150055.26	T^0	3154 58396	T	-0.021932551	T^2	"
144204019012	290 1125	15875495 7	T^-1	2 34792E-06	T^3	-815701567	T^-2	
		-535 615998	T^0 5	-501 870511	Tln(T)	010/0100/	1 2	
Na ₂ CaSiO ₄	298-3000	-2352484 65	T^0	1530 62599	T T	3552620 53	T^-1	"
1142040104	290 2000	-535 615998	T^0 5	-176870818	T^-2	-238 763839	Tln(T)	
NazFeO2	298-1600	-838530 863	T^0	55 3236417	T Z	-0.037236581	T^2	"
11021 002	290 1000	1673335.01	T^-1	2 34792F-06	T^3	6003 60001	T^0 5	
		-48 1915266	Tln(T)	2.5 1792E 00	15	0005.00001	1 0.5	
Na ₂ FeSiO ₄	298-1300	-1939536.29	T^0	535 519672	Т	-0.037236581	т^2	"
11021 00104	290 1500	4652382 55	T^_1	2 34792F-06	T^3	6003 60001	T^0 5	
		-159707687	T^_?	-123 56/105	Tln(T)	0005.00001	1 0.5	
NapMgpSicO15	298-1200	-7464744 74	T^0	/026 08038	TIII(T)	115/2270 5	T^_1	"
110211182010015	270-1200	-/ -13351 27/7	T^0 5	-54020/272	т т^_?	-738 22/2.5	T = 1 Tln(T)	
NaMaSiaOre	298-1200	-13331.2747	T^0.5	3352 50082	T -2	8311434 41	T^_1	"
14010	290-1200	-4770740.4	T^0 5	-400101412	TA 2	-504 460064	T = 1 $T \ln(T)$	
NazFecOs	208 1405	2062/27 55	T 0.3	2650 27502	т -2	0 022000027	-1.11(1) / T∧2	"
11031 6509	270-1403	-3002437.33	то то 1	2030.37392 2 52199E 02	1 T^2	-0.03209002/	$1 \ \Delta$ Tln(T)	
		4244377.31	11	J.J∠188E-00	1.3	-441.040320	- I III(I)	

Table 5.6 cont'd. Gibbs energy functions of stoichiometric solid oxides

Compound	T range (K)	Gibbs energy	functio	on (J/mol)				Reference
Na ₃ FeO ₃	298-1600	-1237614.77	T^0	1024.33145	Т	-0.032898827	T^2	Bale et al.43
		1336937.51	T^-1	3.52188E-06	T^3	-167.828466	Tln(T)	
Na4CaSi3O9	298-1423	-4764849.46	T^0	4414.32325	Т	1829673.99	T^-1	"
		-20512.38	T^0.5	-125824903	T^-2	-618.612663	Tln(T)	
Na ₄ FeO ₃	298-1600	-1258074.28	T^0	611.06001	Т	-0.059169132	T^2	"
		2080020.02	T^-1	4.69583E-06	T^3	-0.0001127	T^0.5	
		-114.407527	Tln(T)					
Na ₅ FeO ₄	298-1600	-1536285.43	T^0	1377.66073	Т	-0.054831378	T^2	"
		1743622.52	T^-1	5.86979E-06	T^3	-234.044467	Tln(T)	
Na5FeSi4O12	298-1200	-5901004.17	T^0	3300.67203	Т	-0.054831378	T^2	"
		13659812.7	T^-1	5.86979E-06	T^3	-638830749	T^-2	
		-535.535139	Tln(T)					
Na ₈ Ca ₃ Si ₅ O ₁₇	298-1373	-9483438.48	T^0	5030.36688	Т	-0.087730204	T^2	"
		18242696.7	T^-1	9.39167E-06	T^3	-850027830	T^-2	
		-1606.848	T^0.5	-818.100855	Tln(T)			
Na ₈ Fe ₂ O ₇	298-1600	-2843129	T^0	2237.49593	Т	-0.040443454	T^2	"
		1776313.56	T^-1	-2.49612E-06	T^3	-392.782041	Tln(T)	
NasFeeSi15O40	298-850	-18922663.3	T^0	6768,9849	Т	-0.179554384	T^2	"
0 0 10 10		53912353.1	T^-1	9.39167E-06	T^3	36021.6001	T^0.5	
		-2395615307	T^-2	-1287.30718	Tln(T)			
NaFe ₂ O ₃	298-1700	-1061763.83	T^0	276.064732	T	-0.026270305	T^2	"
	_, , , , , , , ,	2196902.5	T^-1	1.17396E-06	T^3	6003.60001	T^0.5	
		-83.5879913	Tln(T)					
NaFeO ₂ (B)	870-1620	-739289.965	T^0	671.358406	Т	-0.00384665	T^2	"
1 (az 0 0 2 (p)	0,01020	1276100	T^-1	-110.95	Tln(T)	0.00000.0000		
NaFeO ₂ (a)	1270-1620	-737114.285	T^0	669.6452.72	T T	-0.00384665	T^2	"
		1276100	T^-1	-110.95	Tln(T)			
NaFeSi ₂ O ₆	298-1263	-2641046.28	T^0	1039.32488	Т	-0.074399644	T^2	"
		1805576.29	T^-1	9.93995E-06	T^3	-171.449479	Tln(T)	
	1263-5000	-2673924.39	T^0	1635.02116	Т	-262	Tln(T)	
$Li_4B_2O_5(\beta)$	298-400	-2798414.17	T^0	1198.60811	Т	-0.060352471	T^2	Yu et al. ¹⁶⁰
		2363564.62	T^-1	1.88316E-06	T^3	-188.982264	Tln(T)	
	400-723	-2801825.13	T^0	1257.01555	Т	-0.049179518	T^2	
		2594979.57	T^-1	-8.1517E-07	T^3	-198.222711	Tln(T)	
	723-1726	-2834611.63	T^0	1821.08323	Т	0.01363341	T^2	
		1862380	T^-1	-9.18659E-06	T^3	-283.03532	Tln(T)	
	1726-3000	-2872953.96	T^0	2247.56306	Т	1.91193E-16	T^2	
		3.46897E-07	T^-1	-8.6391E-21	T^3	-337.704	Tln(T)	
	3000-4000	-2872953.96	T^0	2247.56306	Т	1.91193E-16	T^2	
		3.46897E-07	T^-1	-8.6391E-21	T^3	-337.704	Tln(T)	
$Li_4B_2O_5(\alpha)$	298-400	-2785382.96	T^0	1183.98625	Т	-0.060352471	T^2	"
		2363564.62	T^-1	1.88316E-06	T^3	-188.982264	Tln(T)	
	400-723	-2788793.93	T^0	1242.39369	Т	-0.049179518	T^2	
		2594979.57	T^-1	-8.1517E-07	T^3	-198.222711	Tln(T)	
	723-1726	-2821580.42	T^0	1806.46137	Т	0.01363341	T^2	
		1862380	T^-1	-9.18659E-06	T^3	-283.03532	Tln(T)	
	1726-3000	-2859922.75	T^0	2232.9412	Т	1.91193E-16	T^2	
		3.46897E-07	T^-1	-8.6391E-21	T^3	-337.704	Tln(T)	
	3000-4000	-2859922.75	T^0	2232.9412	Т	1.91193E-16	T^2	
		3.46897E-07	T^-1	-8.6391E-21	T^3	-337.704	Tln(T)	

Table 5.6 cont'd. Gibbs energy functions of stoichiometric solid oxides

Compound	T range (K)	Gibbs energy	function	n (J/mol)				Reference
Li ₆ B ₂ O ₆	298-400	-3502442.33	T^0	1695.89381	Т	-0.053535766	T^2	Yu et al. ¹⁶⁰
		3294754.62	T^-1	-2.71013E-06	T^3	-265.647924	Tln(T)	
	400-723	-3505853.3	T^0	1754.30125	Т	-0.042362813	T^2	
		3526169.57	T^-1	-5.40846E-06	T^3	-274.888371	Tln(T)	
	723-1726	-3538639.79	T^0	2318.36894	Т	0.020450115	T^2	
		2793570	T^-1	-1.37799E-05	T^3	-359.70098	Tln(T)	
	1726-3000	-3596153.28	T^0	2958.08868	Т	2.86789E-16	T^2	
		5.20346E-07	T^-1	-1.29586E-20	T^3	-441.704	Tln(T)	
	3000-4000	-3596153.28	T^0	2958.08868	Т	2.86789E-16	T^2	
		5.20346E-07	T^-1	-1.29586E-20	T^3	-441.704	Tln(T)	
Li ₂ B ₄ O ₇	298-3000	-3402275.81	T^0	932.398997	Т	-0.0720525	T^2	"
		998000	T^-1	-158.812	Tln(T)			
Li ₆ B ₄ O ₉	298-400	-4914495.4	T^0	1924.78336	Т	-0.127521647	T^2	"
		3795939.25	T^-1	8.35962E-06	T^3	-301.298867	Tln(T)	
	400-723	-4921317.34	T^0	2041.59824	Т	-0.10517574	T^2	
		4258769.14	T^-1	2.96295E-06	T^3	-319.779762	Tln(T)	
	723-1726	-4986890.33	T^0	3169.73361	Т	0.020450115	T^2	
		2793570	T^-1	-1.37799E-05	T^3	-489.40498	Tln(T)	
	1726-3000	-5044403.82	T^0	3809.45335	Т	2.86789E-16	T^2	
		5.20346E-07	T^-1	-1.29586E-20	T^3	-571.408	Tln(T)	
	3000-4000	-5044403.82	T^0	3809.45335	Т	2.86789E-16	T^2	
		5.20346E-07	T^-1	-1.29586E-20	T^3	-571.408	Tln(T)	
Li2B6O10	298-3000	-4732838.3	T^0	1903.95265	Т	-0.044821	T^2	"
2 0 10		2111000	T^-1	-311.808	Tln(T)			
Li2B8O13	298-3000	-6065941.56	T^0	2645.55771	Т	-0.049248	T^2"	Yu et al. ¹⁶⁰
		5807500	T^-1	-425.525	Tln(T)			
Li ₄ B ₁₀ O ₁₇	298-3000	-8128860.43	T^0	2829.898	T	-0.1168735	T^2	"
		3109000	T^-1	-470.62	Tln(T)			
Li2Si2O5(B)	298-1215	-2449151.76	T^0	1738.26556	Т	-0.006585	T^2	Konar et al.267
		-813634.555	T^-1	-40510.6978	ln(T)	-258.27	Tln(T)	
$Li_2Si_2O_5(\alpha)$	1215-1405	-2449150.69	T^0	1738.26469	Т	-0.006585	T^2	"
		-813634.555	T^-1	-40510.6978	ln(T)	-258.27	Tln(T)	
Li ₆ Si ₂ O ₇	298-800	-4020644.71	T^0	2166.97728	Т	-0.0614105	T^2	"
		2514900	T^-1	-3885.68	T^0.5	-330.95	Tln(T)	
	800-984	-4305756.42	T^0	6622.10456	Т	0.0291895	T^2	
		883400	T^-1	0.000180833	T^3	-3885.68	T^0.5	
		-1.70536E-20	T^8	-971.35	Tln(T)			
	984-1452	-4135564.97	T^0	2198.55469	Τ	-0.0669105	T^2	
		3634800.75	T^-1	4.66667E-06	T^3	20689.4704	ln(T)	
		-3885.68	T^0.5	-339.75	Tln(T)		(-)	
	1452-1550	-4189987.76	T^0	2128.07712	Τ	-0.0575	T^2	
		2751400.75	T^-1	4.66667E-06	T^3	20689.4704	ln(T)	
		-340.747	Tln(T)		-		(-)	
Li ₂ SiO ₃	298-1452	-1679303.35	T^0	1195.94541	Т	-0.0094105	T^2	"
		883400	T^-1	-3885.68	T^0.5	-171.35	Tln(T)	
Li ₄ SiO ₄	298-800	-2392051.35	T^0	1001.05747	Т	-0.052	T^2	"
2.10.07		1631500	T^-1	-159.6	Tln(T)			
	800-984	-2677163.07	T^0	5456,18475	т. Т	0.0386	Т^2	
		0.000180833	T^3	-1.70536E-20	T^8	-800	Tln(T)	
	984-1550	-2506971 61	T^0	1032.63489	T	-0.0575	T^2	
	201 1220	2751400 75	T^-1	4 66667E-06	T^3	20689 4704	ln(T)	
		-168.4	Tln(T)		1 5	20007.7/07	(1)	
		100.1	1 11(1)					

Table 5.6 cont'd. Gibbs energy functions of stoichiometric solid oxides

Compound	T range (K)	Gibbs energy	/ functi	ion (J/mol)				Reference
Li ₈ SiO ₆	298-373	-3842448.51	T^0	1292.20617	Т	-0.11628838	T^2	Konar et al.267
		7276143.5	T^-1	9.13552E-06	T^3	41378.9409	ln(T)	
		-961.103996	T^0.5	-81928061.6	T^-2	-216.997937	Tln(T)	
	373-1200	-3842253.53	T^0	1292.2091	Т	-0.120508391	T^2	
		7276143.5	T^-1	1.6671E-05	T^3	41378.9409	ln(T)	
		-961.103996	T^0.5	-81928061.6	T^-2	-216.997937	Tln(T)	
KAlSiO ₄ (hexagonal)	298-810	-2209349.9	T^0	1159.86221	Т	-2.52E-03	T^2	Bale et al.43
		6553350.46	T^-1	5.13E-06	T^3	-3.92E-09	T^4	
		-356488327	T^-2	-186	Tln(T)			
	810-2000	-2208089.9	T^0	1157.55021	Т	6553350.04	T^-1	
		-356488327	T^-2	-186	Tln(T)			
KAlSiO ₄ (orthorhombic)	298-2000	-2206935.88	T^0	1156.1255	Т	6553350.04	T^-1	"
		-356488327	T^-2	-186	Tln(T)			
CaAl ₂ Si ₂ O ₈ (hexagonal)	298-350	-4264064.79	T^0	1202.78457	Т	-208.19584	Tln(T)	"
CaAl ₂ Si ₂ O ₈ (anorthite)	298-1828	-4235420.14	T^0	3179.03794	Т	-14936.596	T^0.5	"
		52837204.7	T^-2	-439.369371	Tln(T)			
	1828-2500	-4447513.48	T^0	2505.38529	Т	-380.744	Tln(T)	

Table 5.6 cont'd. Gibbs energy functions of stoichiometric solid oxides

Molecule	$T(\mathbf{K})$	Gibbs energy	functio	on (J/mol)				Reference
$O_2(g)$	298-1000	-5219.33235	T^0	-12.0704127	Т	-0.008489341	T^2	Bale et al.43
		-114664.628	T^-1	1.12769E-06	T^3	-316.646634	T^0.5	
		-26.9240574	Tln(T)					
	1000-4000	-389938.784	T^0	638.786228	Т	0.000723722	T^2	
		9341342.96	T^-1	-16506.1488	T^0.5	95803.9595	ln(T)	
		-89.6813271	Tln(T)					
	4000-6000	-8951197.09	T^0	2742.8706	Т	592489211	T^-1	
		-139742.679	T^0.5	1674792.24	ln(T)	-249.173117	Tln(T)	

Fig. 5.1. Computed K₂O-Na₂O phase diagram.

Fig. 5.2. Computed K₂O-Al₂O₃ phase diagram. Data: Eliezer & Howald²³⁷: \triangle melt + β -Al₂O₃. Roth²³⁸: \bigcirc β -Al₂O₃ \square melt + KAlO₂ \blacksquare melt + KAlO₂ + β -Al₂O₃. Moya et al.²³⁶: \bigtriangledown KAlO₂ + β -Al₂O₃ \bigcirc melt + KAlO₂ \bullet melt + β -Al₂O₃ \times melt + KAlO₂ + β -Al₂O₃ \diamondsuit β -Al₂O₃ \divideontimes Al₂O₃(corundum) + β -Al₂O₃.

Fig. 5.3. Computed K₂O-SiO₂ phase diagram. Data: \bigcirc^{269}

Fig. 5.4. Computed activity of K₂O(ℓ) in the K₂O-SiO₂ melt. Data: Zaitsev²⁷⁰: × 1773 K # 1673 K \diamondsuit 1573 K \bigtriangledown 1373 K \bigtriangleup 1318 K \Box 1273 K \bigcirc 1173 K. Steiler²⁷¹: O 1573 K.

Fig. 5.5. Computed K₂O-B₂O₃ phase diagram. Data: Kaplun & Meshalkin²⁴²: \times liquidus \triangle solidus. Polyakova & Tokareva²⁴¹: \circ liquidus \bullet solidus. Rollet²³⁹: + liquidus. Rollet²⁴⁰: \diamond liquidus.

Fig. 5.6. Computed Li₂O-Na₂O phase diagram.

Fig. 5.8. Computed Li₂O-SiO₂ phase diagram. Data: $\bigcirc^{273} \times ^{274} \square^{275} \triangle^{276} \bigoplus^{277}$

Fig. 5.9. Computed activity of Li₂O(ℓ) in the Li₂O-SiO₂ melt. Data: \bigcirc 1673 K²⁷⁸ \triangle 1473 K²⁷⁸ \square 1473 K²⁷⁹ \bigcirc 1173 K²⁷⁹

Fig. 5.10. Computed partial enthalpy of SiO₂ in the Li₂O-SiO₂ melt at 1663 K. Data: \bigcirc 1663 K^{280}

Fig. 5.11. Computed Li₂O-B₂O₃ phase diagram. Data: Rollet & Bouaziz²⁸¹: O liquidus \Box solidus. Sastry & Hummel²⁸²: \triangle melt \diamond melt + Li₂B₄O₇ ∇ Li₂B₄O₇ + Li₄B₁₀O₁₇ ∇ Li₂B₄O₇ + LiB₃O₅ ∇ Li₂B₄O₇ + LiBO₂ \Box Li₂B₈O₁₃ \Box melt + Li₂B₈O₁₃ \diamondsuit Li₂B₈O₁₃ + Li₂B₄O₇ \bigcirc Li₄B₁₀O₁₇ \divideontimes melt + Li₄B₁₀O₁₇ \diamondsuit Li₄B₁₀O₁₇ + Li₂B₄O₇ \bigstar Li₄B₁₀O₁₇ + LiB₃O₅ \checkmark melt + Li₈O₅ \Box LiB₃O₅ + Li₂B₄O₇ \diamondsuit LiB₃O₅ + Li₂B₈O₁₃ \bigcirc LiB₀O₂ \diamondsuit melt + LiB₀O₂.

Fig. 5.12. Computed Li₂O-B₂O₃ phase diagram. Data: Sastry & Hummel²⁸³: \Box liquidus \bigcirc incongruent melting \bigcirc Li₄B₂O₅ inversion \diamondsuit Li₃BO₃ \bullet Li₃BO₃ + Li₂O \rtimes Li₃BO₃ + Li₆B₄O₉ \blacksquare Li₆B₄O₉ \blacklozenge melt + LiBO₂ \blacklozenge LiBO₂ + Li₆B₄O₉ \diamondsuit α -Li₄B₂O₅ \Box α -Li₄B₂O₅ + Li₃BO₃ \blacktriangle α -Li₄B₂O₅ + Li₆B₄O₉ \bigtriangleup β -Li₄B₂O₅ \bigtriangledown β -Li₄B₂O₅ + Li₃BO₃

Fig. 5.13. Computed enthalpy of mixing in the Li₂O-B₂O₃ system at 1299 K. Data: \bigcirc 1299 K^{137}

Fig. 5.14. Computed partial enthalpy of B₃O_{4.5} in the Li₂O-B₂O₃ melt at 1213 K. Data: \bigcirc 1213 K^{284}

Fig. 5.15. Computed CaO-Na₂O phase diagram.

Fig. 5.17. Computed activity of CaO(s) and Al₂O₃(corundum) in the CaO-Al₂O₃ melt. Data: CaO(s) activity: \bigcirc 2060 K²⁹⁰ \spadesuit 1873 K²⁹¹ \diamondsuit 1823 K²⁹² \bigtriangledown 1773 K²⁹³ \bigoplus 1773 K²⁹⁴. Al₂O₃(corundum) activity: \Box 2060 K²⁹⁰ \blacktriangle 1873 K²⁹¹ \bigtriangleup 1873 K²⁹¹ \bigtriangleup 1773 K²⁹³

Fig. 5.18. Computed CaO-SiO₂ phase diagram. Data: $\bigcirc^{295} \Box$ two phase liquid immiscibility²⁹⁶ homogeneous liquid²⁹⁶ $\triangle^{297} \diamondsuit^{287} \triangle^{298}$

Fig. 5.19. Computed activity of SiO₂(cristobalite) and CaO(s) in the CaO-SiO₂ melt. Data: SiO₂(cristobalite) activity: ■ 1873 K^{291} ■ 1873 K^{299} ◆ 1823 K^{299} + 1773 K^{300} # 1723 K^{301} ■ 1773 K^{301} × 1823 K^{301} . CaO(s) activity: □ 1873 K^{291} ○ 1873 K^{299} ◆ 1823 K^{299} ◇ 1773 K^{300} • 1773 K^{301} ⊽ 1823 K^{301} ▲ 1723 K^{301} ■ 1773 K^{302} ■ 1823 K^{302} .

Fig. 5.20. Computed CaO-B₂O phase diagram. Data: $\bigcirc^{303} \square^{303} \triangle$ immiscible liquid ³⁰⁴ \blacktriangle homogeneous liquid ³⁰⁴ \bigtriangledown^{305}

Fig. 5.21. Computed enthalpy of mixing in the CaO-B₂O₃ system at 1725 K. Data: \bigcirc 1725 $K^{306}\,\square$ 1725 K^{307}

Fig. 5.22. Computed Fe₂O₃-Na₂O phase diagram at O₂(g) partial pressure of 0.21 atm. Data: $\bigcirc^{308} \square^{127}$

Fig. 5.23. Computed Fe₂O₃-Al₂O₃ phase diagram at O₂(g) partial pressure of 0.21 atm. Data: $\bigcirc^{309} \square^{310} \diamondsuit^{311} \triangle^{312} \bigcirc^{313} \blacksquare^{314} \diamondsuit^{315}$

Fig. 5.24. Computed Fe₂O₃-Al₂O₃ phase diagram at O₂(g) partial pressure of 1 atm. Data: \bigcirc^{309}

Fig. 5.25. Computed Fe₂O₃-SiO₂ phase diagram. Data calculated by Selleby²²⁰: O

Fig. 5.26. Computed Fe₂O₃-B₂O₃ phase diagram at O₂(g) partial pressure of 0.21 atm. Data: Joubert et al.³¹⁶: \bigcirc incongruent melting. Makram et al.³¹⁷: \square Fe₂O₃ \triangle Fe₂O₃ + Fe₃BO₆ \bigtriangledown Fe₃BO₆ + Fe₂O₃ + FeBO₃ \bigstar FeBO₃ \bigstar FeBO₃ + Fe₂O₃ \land FeBO₃ + Fe₃BO₆ + Fe₂O₃.

Fig. 5.27. Computed FeO-Na₂O phase diagram saturated with Fe(bcc). Data: \bigcirc^{318}

Fig. 5.28. Computed FeO-Al₂O₃ phase diagram saturated with Fe(bcc). Data: $\bigcirc^{309} \square^{319} \triangle^{320} \bigtriangledown^{321} \overset{322}{\times} \overset{323}{\times}$

Fig. 5.29. Computed FeO-SiO₂ phase diagram at O₂(g) partial pressure of 0.21 atm. Data: $\bigcirc^{324} \square^{325} \triangle^{325}$

Fig. 5.30. Computed FeO-SiO₂ phase diagram saturated with Fe(bcc). Data: $\bigcirc^{326} \square^{327} \triangle^{328} \bigtriangledown^{329} \blacktriangle^{324}$

Fig. 5.31. Computed activity of FeO(ℓ) in the FeO-SiO₂ melt. Data: \bigcirc 1536 K³²⁹ \square 1587 K³²⁹ \times 1638 K³²⁹ # 1680 K³²⁹ + 1535 K³³⁰ \blacktriangledown 1579 K³³⁰ \blacklozenge 1631 K³³⁰ \triangle 2058 K³³¹ \diamondsuit 2153 K³³¹ \bigtriangledown 2233 K³³¹

Fig. 5.32. Computed FeO-B₂O₃ phase diagram saturated with Fe(bcc). Data: $\bigcirc^{244} \square^{243}$

Fig. 5.33. Computed activity of FeO(s) at 1473 K and 1573 K and FeO(ℓ) at 1673 K in the FeO-B₂O₃ melt. Data: FeO(s) activity: \bigcirc 1473 K²⁴⁴ \square 1573 K²⁴⁴. FeO(ℓ) activity: \triangle 1673 K²⁴⁴

Fig. 5.34. Computed MgO-Na₂O phase diagram.

Fig. 5.35. Computed MgO-Al₂O₃ phase diagram. Data: $\bigcirc^{332} \square^{333} \triangle^{334} \bigtriangledown^{226}$ $\diamondsuit^{335} \nabla^{336} \bigtriangledown^{337} \divideontimes^{338} \nabla^{224}$

Fig. 5.36. Computed MgO-SiO₂ phase diagram. Data: \bigcirc ³³⁹

Fig. 5.37. Computed MgO-B₂O₃ phase diagram. Data: $\bigcirc^{340} \square^{304} \triangle^{341}$

Fig. 5.38. Computed activity of MgO(s) in the MgO-B₂O₃ melt. Data: \bigcirc 1823 K²⁴⁶ \square 1773 K²⁴⁶ \triangle 1723 K²⁴⁷

Fig. 5.39. NaAlSiO₄-NaFeSiO₄ phase diagram. Data: $\bigcirc^{250} \square^{252}$

Fig. 5.40. NaAlSiO4-NaFeSi₂O₆ phase diagram. Data: \bigcirc^{252}

Chapter 6

Validating HLW Thermodynamic Database to Experimental Data

6.1. Introduction

A thermodynamic database consisting of the oxides Na₂O, Al₂O₃, SiO₂, B₂O₃, K₂O, Li₂O, CaO, MgO, Fe₂O₃, and FeO has been developed to model the equilibrium behavior of nepheline crystallization in high-level waste (HLW) glass. As part of this process, the nepheline compound energy formalism (CEF) model was expanded to include the elements K, Ca, Mg, and Fe, which will be discussed in this report.

The final phase of the nepheline database development effort was to validate database calculations relative to HLW glass experimental data. Both annealed and canister centerline cooled (CCC) glass sample data were considered. Additionally, nepheline compositional data was included for comparison with database computations. Results of these comparisons indicate that the database agrees well with HLW glass experimental data. However, as phase precipitation in a CCC glass sample is dependent on kinetics, an approach that accounts for the kinetics of nucleation and growth such as phase field modeling will need to be utilized as it represents material morphological evolution with time. These models, however, often require accurate Gibbs energies of phases, which can effectively only be provided from equilibrated systems computed from a reliable thermodynamic database such as developed in this work.

6.2. Optimization of nepheline solid solution to compositional data

Ahmadzadeh et al.²⁴⁸ and Marcial et al.⁶ reported stoichiometric compositions of nepheline crystallized in HLW glass samples measured by electron probe microanalysis (EPMA), which was used to optimize the Gibbs energies of the nepheline CEF KAISiO₄, CaAl₂Si₂O₈, MgAl₂Si₂O₈, and NaFeSiO₄ endmembers. Ahmadzadeh et al.²⁴⁸ fabricated 5 glasses for analysis of the nepheline phase containing only Fe as a minor component with samples annealed for 7 hours at 775°C and then quenched. In contrast, Marcial et al.⁶ subjected 5 glass samples with compositions adopted from previous studies to a CCC heat treatment. These compositions contained a complete profile of HLW glass oxides allowing for substitution of all oxides contained in the database with nepheline. Of note, the A4 composition was neglected in this effort as 4.47 wt.% of oxides in the sample are not considered in the current database, which was deemed too excessive to enable a productive benchmarking process. Table 6.1 & Table 6.2 display, respectively, the oxide composition and experimentally measured and calculated stoichiometry of nepheline for each glass sample, which show very good agreement. For the CCC samples fabricated by Marcial et al.,⁶ the temperatures chosen to calculate the nepheline stoichiometry were at the centroids of the areas indicated in Fig. 6.1 - Fig. 6.10, which are explained in detail in Section 6.3.2. Details of this type of computation and how this temperature is estimated are also provided in Section 6.3.2. Those experimental nepheline compositions reported as NaAlSiO₄ in Table 6.2 were identified using x-ray diffraction. While this analysis was sufficient to conclude that nepheline with the base crystalline structure of NaAlSiO₄ precipitated in the sample, it is likely that the nepheline phase contains K, Ca, Mg, and/or Fe as seen in the results of

Ahmadzadeh et al.²⁴⁸ and Marcial et al.⁶ and as predicted by database calculations (Table 6.2).

6.3. Comparison of computed phases to those observed in HLW compositions

6.3.1. HLW glass annealed samples

Both CCC and annealing heat treatments were used to fabricate representative the HLW glass samples.^{2, 8, 18, 19, 22, 23, 44, 54, 55, 57, 260, 342-354} The annealed samples were quenched after heat treatment at a constant temperature with techniques used such as contacting the glass-containing crucible with cold water³⁴⁵ or pouring the molten glass on a stainless steel plate allowing for air cooling.^{353, 354} Figure 2 of Billings & Edwards³⁵³ as well as Figs. 3-1 & 3-2 of Billings & Edwards³⁵⁴ are time-temperature-transformation (TTT) diagrams generated from experimental measurements conducted at SRNL. The referenced figures indicate that only trevorite formed during the CCC treatment whereas multiple other phases formed such as lithium silicate, acmite, krinovite, albite, and nepheline when samples were annealed for time periods ranging from 24 to 768 hours. For the C2-510 glass, nepheline did not start forming until 768 hours at 500°C. As expected, experimental results indicate that the CCC heat treatment affects the crystalline phases that form in HLW glass, and thus kinetics must be considered when modeling the precipitation of crystalline phases in CCCtreated HLW glass. This is evident in HLW studies^{2, 8, 18, 19, 22, 23, 44, 54, 55, 57, 260, 342-352} in which the observed phases in annealed and CCC samples significantly differ.

Figure 2 of Billings & Edwards³⁵³ and Figs. 3-1 & 3-2 of Billings & Edwards³⁵⁴ indicates that trevorite (NiFe₂O₄) of the spinel group is a main secondary phase for the SB3-TTT, C2-510, and C4-418 glass compositions at the 768 hour anneal time. As the database does not currently contain Ni, calculations cannot be conducted to accurately

predict the behavior of the systems analyzed by Billings & Edwards.^{353, 354} Additionally, anneal times in studies,^{2, 8, 18, 19, 22, 23, 44, 54, 55, 57, 260, 342-352} which varied from 1 to 74 hours, were not ideal for comparison with calculations as Billings & Edwards^{353, 354} indicate new crystalline phases formed at > 100 hours. Phase changes continued to occur between samples annealed for 384 and 768 hours, and nepheline did not form for the C2-510 composition at 500°C until annealed for 768 hours.³⁵³ Thus, any annealing experiments conducted for the purpose of benchmarking equilibrium calculations using the HLW database should only consider samples with a minimum anneal time of 100 hours and ideally the longest possible time, which in these studies was 768 hours. Also, anneal temperatures of studies^{2, 8, 18, 19, 22, 23, 44, 54, 55, 57, 260, 342-352} typically ranged from 1250 to 800°C, however as indicated by Billings & Edwards,^{353, 354} nepheline and various other secondary phases can form in the temperature range of 500 to 700°C. Hence, annealing experiments would also ideally analyze samples annealed at temperatures from 800 to 500°C for comparison with database calculations.

6.3.2. CCC HLW glass samples that precipitated nepheline

Certain HLW glass compositions formed nepheline after a CCC heat treatment (Table 6.1), which indicates that nepheline precipitation kinetics for these samples differed from those that did not form nepheline following CCC. While the CCC times varied from 19.5 to 37.6 hours (Table 6.2), nepheline did not crystallize in the SB3-TTT, C2-510, or C4-418 compositions until annealing times exceeded 100 hours.^{353, 354} Consequently, calculations were conducted for Table 6.1 samples to compare with experimental results. While being a comparison of computed results at equilibrium to experimental measurements obtained from a kinetically dependent heat treatment, the more rapid

formation of nepheline in these samples indicates they may be closer to an equilibrium state, at least as it concerns the nepheline phase, and, thus, may allow for a more useful data comparison.

Of HLW glass sample data in the literature,^{2, 6, 8, 18, 19, 22, 23, 44, 54, 55, 57, 248, 260, 342-352} glass compositions were selected for this analysis if the sample precipitated nepheline under a CCC treatment and if the summation of the mass fractions of oxides not included in the database, e.g., ZrO₂, BaO, Ce₂O₃ and so forth, were approximately equal to or less than 3 wt.%. The latter criterion was applied so that phases not included in the database would be minimized. 10 compositions met these criteria (Table 6.1), and results are displayed in Fig. 6.1– Fig. 6.12.

Figures Fig. 6.1 – Fig. 6.10 display calculated mass fractions of stable phases for the CCC glass compositions listed in Table 6.1 over the temperature range of 500 to 1200°C. The maximum temperature of 1200°C bounds the nominal WTP and DWPF HLW glass melt pool temperature of 1150°C.^{342, 344, 346, 347, 350, 355-357}

Analysis of Fig. 6.1 - Fig. 6.10 indicates that nepheline is consistently computed to form at high temperatures (> 1000°C) except for the CVS2-63 sample that had a high-B₂O₃ amount of 17.17 wt.%. The suppression of nepheline crystallization with increased B₂O₃ is consistent with the findings of Fox & Edwards²³ who concluded that increased B₂O₃ concentration significantly reduced the number of glass compositions where nepheline crystallized.

As the CCC heat treatment is a more rapid cooling process, crystalline phases have a more limited time period to form resulting in stable crystalline phases which precipitate at higher temperatures. Accordingly, areas have been indicated in Figs. Fig. 6.1 – Fig. 6.10

spanning from approximately 700 to 1000°C, which represent the likely temperature ranges that phases were quenched in for the CCC samples. Comparison with phases experimentally observed in each glass sample agree well (Table 6.2). Also, as discussed in Section 6.2, the good agreement of the calculated nepheline stoichiometries in the temperature ranges specified in Figs. Fig. 6.1 - Fig. 6.10 with those compositions that were determined from EPMA (Table 6.2) further indicates the accuracy of the nepheline CEF model and by extension the overall database.

A minor caveat worth noting is the computed Ca-containing phase, Na₂Ca₂Si₃O₉, in Fig. 6.7 & Fig. 6.8 for CVS2-35 and CVS2-63, respectively, differs from the experimentally determined Ca₂Al₂SiO₇ phase (Table 6.2). To most accurately reproduce phase crystallization in CCC glass, a kinetic representation may be required.

6.3.3. Computed liquid-liquid immiscibility

Allowing the possibility of the formation of immiscible liquids was required in the equilibrium calculations as certain assessed pseudo-binary systems such as SiO₂ with CaO, MgO, Fe₂O₃, or FeO have experimentally observed miscibility gaps. As noted by Taylor³⁵⁸ and Peeler & Hrma,³⁵⁹ amorphous phase separation commonly occurs in borosilicate glass systems. Peeler & Hrma³⁵⁹ fabricated and heat treated 24 simulated waste glass samples according to a CCC schedule selected from Hrma et al.⁵⁴ identifying 3 compositions with phase separation supporting the equilibrium calculational results of Figs. 3 – 12, which show a second liquid phase forms in all but the NE3-04 composition.

6.4. Scheil-Gulliver cooling compared to equilibrium calculations

Figures Fig. 6.11 & Fig. 6.12 compare results of direct equilibrium calculations with a Scheil-Gulliver cooling calculations for the NP-BL glass composition.⁸ In Scheil-

Gulliver cooling, equilibrium calculations are performed at specified temperature steps between liquidus and solidus, where each subsequent calculation is performed only using the remaining liquid composition, thus removing precipitated phases from consideration and potentially more accurately representing finite cooling rates. Figure Fig. 6.12 indicates that the Scheil-Gulliver calculations indicated a negligible amount of Fe went into solution in nepheline, contradicting experimentally demonstrated solubility of Fe in nepheline as discussed in Section 5.7 (Fig. 5.39 & Fig. 5.40). Direct equilibrium calculations thus remain the best approach despite the obvious non-equilibrium cooling that is observed in CCC samples.

6.5. Suggested future work

The current set of elements and phases that have been modeled and provided in the current database are already useful for determining nepheline and related phase formation. Yet modeling of HLW systems would benefit from continued expansion of the current thermodynamic database to include additional oxides. Besides better representing systems with significant content of these elements, it would also contribute to any future development of kinetics models such as phase field. The oxides should consist of those that contribute to forming secondary phases that were observed to form in either annealed or CCC glass samples (Table 6.3): Oxides of Bi, C, Ce, Cr, Mn, Nd, Ni, P, Pb, Ru, Ti, Zn, and Zr. Most beneficial would be inclusion of the spinel-forming oxides, i.e., NiO, Cr2O₃, MnO, and/or ZnO, as spinel is the most common secondary phase in both annealed and CCC samples.^{2, 8, 18, 19, 22, 23, 44, 54, 55, 57, 260, 342-352} ZrO₂ and Nd₂O₃ as well as phosphates in the form of the ion PO4⁻³ were also relatively common (Table 6.3) and hence should also receive priority consideration for inclusion in the database.

177

Development of accurate thermochemical models of HLW phases would also benefit from experimental work similar to that conducted by Billings & Edwards^{353, 354} where HLW glass samples are fabricated that ideally only consist of the oxides contained in the database, annealed for > 100 hours at temperatures between glass melting temperatures and 500°C, quenched, and then analyzed to identify equilibrium crystalline phases. This type of heat treatment would allow near-equilibrium measurements that can be compared to database equilibrium calculations. Compositions may be selected to encompass the nepheline and surrounding region of the Na₂O-Al₂O₃-SiO₂ liquidus region with amounts of minor oxides varied to assess their influence on nepheline and secondary phase formation.

Phase field or other such time-dependent models will be required to fully understand the obvious non-equilibrium behavior which occurs during the cooling of HLW glass. Hence, approaches that combine thermochemical models with kinetic expressions for nucleation and growth are required to obtain the most accurate description of phase precipitation in HLW glass poured into canisters.

6.6. Tables

Glass ID	Oxide amount $[gm \cdot 10^2]$									
Olass ID	Na ₂ O	Al_2O_3	SiO ₂	B_2O_3	K ₂ O	Li ₂ O	CaO	MgO	Fe ₂ O ₃	Others
Fe0.1_775-7 ²⁴⁸	21.634	33.909	41.115	0	0	0	0	0	3.482	-
Fe0.2_775-7 ²⁴⁸	21.133	30.417	39.851	0	0	0	0	0	8.93	-
Fe0.4_775-7 ²⁴⁸	20.198	24.912	40.987	0	0	0	0	0	13.792	-
Fe0.5_775-7 ²⁴⁸	20.168	23.447	40.805	0	0	0	0	0	20.168	-
Fe0.7_775-7 ²⁴⁸	19.9	20.279	40.35	0	0	0	0	0	19.352	-
NP-K-1 ⁸	19.69	13.36	37.27	7.77	3	4.37	1.09	0.66	9.65	3.06
NP-K- 2^8	19.08	12.95	36.12	7.53	6	4.23	1.05	0.64	9.35	2.96
NP-Ca-1 ⁸	20.51	13.92	38.82	8.09	0.1	4.55	0	0.69	10.05	3.18
NP-Ca-2 ⁸	18.46	12.52	34.94	7.28	0.09	4.1	10	0.62	9.05	2.86
NP-Fe-3 ⁸	19.62	13.31	37.14	7.74	0.1	4.35	1.08	0.66	12.95	3.04
NP-Li-2 ⁸	19.53	13.26	36.98	7.71	0.1	8	1.08	0.66	9.58	3.03
CVS2-35 ⁵⁴	20	13.4	42	5	0	4.28	8	0	6.32	3.03
CVS2-63 ⁵⁴	19	18	32.32	17.17	0	0.51	10	0	2	1
NP2-16 ¹⁸	14.76	13.87	43.32	5.05	0	4.07	2.15	0.3292	14.50	2.96
NE3-04 ¹⁹	17.52	13.79	48.36	4.63	0	4.90	0.2473	0.0087	11.39	0.353

Table 6.1. Oxide compositions of HLW glass samples

Glass ID	Experimental crystalline phase(s)	Computed crystalline phase(s) ^b	CCC time [hr]
Fe0.1_775-7 ²⁴⁸	$Na_{1.004}Al_{0.957}Fe_{0.063}Si_{0.984}O_4$	$Na_{1.0}Al_{0.942}Fe_{0.058}Si_{1.0}O_4$	7°
Fe0.2_775-7 ²⁴⁸	$Na_{0.999}Al_{0.874}Fe_{0.164}Si_{0.971}O_4$	$Na_{1.0}Al_{0.869}Fe_{0.131}Si_{1.0}O_4$	7°
Fe0.4_775-7 ²⁴⁸	$Na_{0.972}Al_{0.728}Fe_{0.258}Si_{1.017}O_4$	$Na_{0.977}Al_{0.733}Fe_{0.245}Si_{1.023}O_4$	7°
Fe0.5_775-7 ²⁴⁸	$Na_{0.978}Al_{0.691}Fe_{0.289}Si_{1.02}O_4$	$Na_{0.979}Al_{0.692}Fe_{0.287}Si_{1.021}O_4$	7°
Fe0.7_775-7 ²⁴⁸	$Na_{0.978}Al_{0.606}Fe_{0.369}Si_{1.023}O_4$	$Na_{0.978}Al_{0.607}Fe_{0.370}Si_{1.022}O_4$	7°
NP-K-1 ⁸	NaAlSiO ₄ , Li ₂ SiO ₃ , SiO ₂	$Na_{6.50}K_{1.47}Ca_{0.007}Mg_{0.008}Al_{6.49}Fe_{1.51}Si_{8.0}O_{32}, Li_2SiO_3$	19.5
NP-K-2 ^{6, 8}	Na5.94K2.23Mg0.03Al6.82Fe1.13Si7.98O32, Li2SiO3	$Na_{5.76}K_{2.21}Ca_{0.006}Mg_{0.007}Al_{6.80}Fe_{1.20}Si_{8.0}O_{32},\ Li_2SiO_3$	19.5
NP-Ca-1 ⁸	NaAlSiO ₄ , Li ₂ SiO ₃	$Na_{7.91}K_{0.053}Mg_{0.007}Al_{5.67}Fe_{2.31}Si_{8.01}O_{32}, Li_2SiO_3$	19.5
NP-Ca-2 ^{6, 8}	$Na_{8.12}K_{0.01}Ca_{0.13}Mg_{0.07}Al_{6.89}Fe_{0.79}Si_{8.12}O_{32}$, spinel ^d	$Na_{7.49}K_{0.055}Ca_{0.155}Mg_{0.07}Al_{6.85}Fe_{1.15}Si_{8.0}O_{32}$	18.5
NP-Fe-3 ^{6,8}	$Na_{7.87}K_{0.05}Ca_{0.01}Mg_{0.02}Al_{6.2}Fe_{1.55}Si_{8.19}O_{32}$	$Na_{7.75}K_{0.083}Ca_{0.028}Mg_{0.05}Al_{5.99}Fe_{2.0}Si_{8.01}O_{32},\ Li_2SiO_3,\ Fe_2O_3$	25.5
	Li ₂ SiO ₃ , Fe ₂ O ₃ , spinel ^d		
NP-Li-2 ^{6, 8}	$Na_{8.03}K_{0.07}Ca_{0.01}Mg_{0.01}Al_{6.82}Fe_{0.96}Si_{8.13}O_{32}$	Na7.79K0.165Ca0.009Mg0.011Al6.37Fe1.63Si8.0O32, Li2SiO3	17.5
	Li_2SiO_3 , Li_8SiO_6 , spinel ^d		
CVS2-35 ⁵⁴	NaAlSiO ₄ , Ca ₂ Al ₂ SiO ₇	Na7.84Ca0.077Al6.40Fe1.59Si8.0O32, Na2Ca2Si3O9	33
CVS2-63 ⁵⁴	NaAlSiO ₄ , Ca ₂ Al ₂ SiO ₇	$Na_{7.93}Ca_{0.029}Al_{6.70}Fe_{1.29}Si_{8.01}O_{32}, Na_2Ca_2Si_3O_9$	25
NP2-16 ¹⁸	NaAlSiO ₄ , Fe ₂ O ₃ , Fe ₃ O ₄ , Li ₂ SiO ₃	Na7.14Ca0.045Mg0.119Al5.21Fe2.25Si8.53O32, Li2SiO3, Fe2O3	37.6 ^e
NE3-04 ¹⁹	Nepheline, ^d Li ₂ SiO ₃	Na7.37Ca0.012Mg0.005Al4.64Fe2.77Si8.59O32, Li2SiO3	37.6 ^e

Table 6.2. Stable crystalline phases and cooling times for CCC HLW glass samples^a

^a First phase listed in experimental and computed crystalline phase columns is nepheline

^b Nepheline composition for each glass ID calculated at temperature of delineated area centroid in respective mass fraction diagram (Fig. 6.1 – Fig. 6.10)

^c Samples were annealed for 7 hours and then quenched

^d Elemental composition not reported ^e CCC time obtained from Marra & Jantzen,³⁶⁰ which was cited by Fox & Edwards¹⁸

Quenched Phases	CCC Phases	
Ca ₂ ZrSi ₄ O ₁₂	Ca ₂ ZrSi ₄ O ₁₂	NdPO ₄
Ca5(PO4)3F	Ca5(PO4)3F	Ni,Cr,Zn,Mn,Nd,Zr,Ce-spinel
Li0.301Ni1.699O2	CaFe ₃ Ti ₄ O ₁₂	NiO
Na ₂ CO ₃	Ce ₂ O ₃	Pb ₂ O ₃
NaMg ₂ CrSi ₃ O ₁₀	Cr_2O_3	RuO ₂
NaNdPO ₄	Li ₃ PO ₄	(Zn0.3Al0.7)Al1.7O4
NdZrO	LiFe ₃ Cr ₂ O ₈	Zr,Ni-pyroxene
Ni,Cr,Zr,Ce,Nd-spinel	Na ₂ CO ₃	ZrCeO
NiO	Na ₃ Bi(PO ₄) ₂	ZrO ₂
RuO ₂	Na3Nd(PO4)2	ZrSiO ₄
ZrO ₂	Na ₈ (AlSiO ₄) ₆ (MnO ₄) ₂	
ZrSiO ₄	NaMg2CrSi3O10	

Table 6.3. Secondary phases experimentally observed in annealed/quenched and CCC HLW glass samples^{2, 8, 18, 19, 22, 23, 44, 54, 55, 57, 260, 342-352}

Fig. 6.1. Equilibrium mass fraction calculation for NP-K-1 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment.

Fig. 6.2. Equilibrium mass fraction calculation for NP-K-2 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment.

Fig. 6.3. Equilibrium mass fraction calculation for NP-Ca-1 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment. Phase labels $A = Na_2SiO_3$ and $B = Na_2B_4O_7$.

Fig. 6.4. Equilibrium mass fraction calculation for NP-Ca-2 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment. Phase labels $A = Ca_5SiO_{10}B_2$, $B = Ca_3B_2O_6$, C = Mg-Spinel, $D = Na_2SiO_3$, and $E = Na_2Ca_3Al_{16}O_{28}$.

Fig. 6.5. Equilibrium mass fraction calculation for NP-Fe-3 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment.

Fig. 6.6. Equilibrium mass fraction calculation for NP-Li-2 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment.

Fig. 6.7. Equilibrium mass fraction calculation for CVS2-35 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment.

Fig. 6.8. Equilibrium mass fraction calculation for CVS2-63 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment. Phase labels $A = Ca_5SiB_2O_{10}$, $B = Ca_3Si_2O_7$, $C = CaSiO_3(\alpha)$, and $D = Ca_2B_2O_5(\alpha)$.

Fig. 6.9. Equilibrium mass fraction calculation for NP2-16 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment. Phase label $A = NaAlSi_3O_8$ (high-albite), NaFeSi₂O₆, and C = Malinkoite.

Fig. 6.10. Equilibrium mass fraction calculation for NE3-04 glass with oval indicating the likely temperature range in which encompassed crystalline phases precipitated from CCC treatment.

Fig. 6.11. Equilibrium mass fraction calculation for NP-BL glass. Phase labels A = Malinkoite, $B = Na_2Si_2O_5(\alpha)$, $C = Na_2SiO_3$, and $D = Na_2B_4O_7$.

Fig. 6.12. Scheil-Gulliver cooling calculation for NP-BL glass.

Chapter 7

Thermodynamic Assessment of the Hollandite High-Level Radioactive

Waste Form³

³ Utlak S. A., Besmann T. M., Brinkman, K. S., Amoroso, J. W., Thermodynamic Assessment of the Hollandite High-Level Radioactive Waste Form. Accepted by *J. Am. Ceram. Soc.*, 03/08/2019. Reprinted here with permission of publisher.

7.1. Abstract

Hollandite has been studied as a candidate ceramic waste form for the disposal of high-level radioactive waste due to its inherent leach resistance and ability to immobilize alkaline-earth metals such as Cs and Ba at defined lattice sites in the crystallographic structure. The chemical and structural complexity of hollandite-type phases developed for high-level waste immobilization limits the systematic experimental research that is required to understand phase development due to the large number of potential additives and compositional ranges that must be evaluated. Modeling the equilibrium behavior of the complex hollandite-forming oxide waste system would aid in the design and processing of hollandite waste forms by predicting their thermodynamic stability. Thus, a BaO-Cs₂O-TiO2-Cr2O3-Al2O3-Fe2O3-FeO-Ga2O3 thermodynamic database was developed in this work according to the CALPHAD methodology. The compound energy formalism was used to model solid solution phases such as hollandite while the two-sublattice partially ionic liquid model characterized the oxide melt. Results of model optimizations are presented and discussed including a 1473 K isothermal BaO-Cs₂O-TiO₂ pseudo-ternary diagram that extrapolates phase equilibrium behavior to regions not experimentally explored.

7.2. Introduction

Ceramic waste forms have been shown to accommodate nearly all constituents in the high-level nuclear waste (HLW) generated from reprocessing spent nuclear fuel including radioactive and non-radioactive components and are known to be resistant to hydrothermal leaching. Ceramic waste forms offer better durability and higher waste loadings for some species for which existing HLW glass formulations are inappropriate or

inefficient.²⁷⁻³⁰ Specifically, titanate ceramics, e.g., SYNROC,³¹ have been extensively studied for use in immobilizing nuclear wastes due to their inherent leach resistance.³²⁻³⁴ Cs is one challenging radionuclide due to its thermal heat load, volatility at high temperatures, and tendency to form water-soluble compounds.³⁰ Ti-substituted hollandite, one of the SYNROC phases, is an alternative candidate for Cs immobilization. In these waste forms, ¹³⁷Cs (and other constituent radionuclides, i.e. ¹³⁷Ba, ⁸⁷Rb) is incorporated into the crystalline structure.^{34, 38, 40} Notably, natural analogs of hollandite including ankagite are present in dolomitic marble in the Apuan Alps in Tuscany, Italy, which demonstrates the stability of the hollandite phase over geologic timescales of interest for nuclear waste immobilization.

Titanate hollandite ceramics can be generally expressed as $A_x(Ti^{+4},M)_8O_{16}$ where A represents alkali and alkaline earth metal cations such as Cs^{+1} , Ba^{+2} , Rb^{+1} , K^{+1} , and Sr^{+2} and M represents +2/+3 cations such as $A1^{+3}$, Fe^{+3} , Fe^{+2} , Ga^{+3} , Cr^{+3} , Zn^{+2} , and Mg^{+2} .^{30, 35} The structure is composed of edge and corner sharing TiO₆ and MO₆ octahedra that form a framework consisting of tunnels parallel to the c-axis or b-axis for tetragonal or monoclinic hollandites, respectively.³⁵ The atom positions located within the tunnel sites can be occupied by A-site cations such as Cs^{+1} and Ba^{+2} , which is beneficial as both ¹³⁷Cs and its decay product ¹³⁷Ba can remain immobilized in the hollandite structure.³⁶¹

Studies have been conducted to analyze the effect of M-site substitution on the crystallographic structure of hollandite and Cs incorporation.^{28, 30, 36-40} Costa et al,.³⁶¹ for instance, determined that hollandite thermodynamic stability generally increased with decreasing average M-site cation radius while Aubin-Chevaldonnet et al.³⁶ demonstrated that various M-site substitutions for Ti⁺⁴ affects the fraction of Cs incorporated into the

hollandite tunnel sites. While experimentally assessing the effects of hollandite additives remains a focus of ongoing research, the complexity in the hollandite system limits the ability to evaluate large composition areas.

To reduce the magnitude of the possible experimental work and target specific hollandite formulations, a thermodynamic database is being developed to provide phase relations to guide development of compositions that are likely to form the hollandite phase as well as avoid secondary Cs parasitic phases. The database developed in this work according to the CALPHAD methodology²⁶ consists of the oxides BaO-Cs₂O-TiO₂-Cr₂O₃-Al₂O₃-Fe₂O₃-Fe₀-Ga₂O₃ and can calculate equilibrium behavior including extension to compositions/conditions that have not been experimentally determined. Solid solutions such as the hollandite phase were modeled with the compound energy formalism (CEF)^{12, 41, 153-156} while the oxide liquid was characterized using the two-sublattice partially ionic liquid (TSPIL) model.^{42, 152} The oxides of Cr, Al, Fe and Ga were considered in this initial development as experimental measurements have been reported for hollandite phases containing these constituents. The hollandite CEF model will subsequently be expanded to include additional elements of interest.

7.3. Identifying oxide systems to address

Table 7.1 provides synthesized hollandite compositions that were used to thermodynamically assess hollandite. The molar amount of TiO₂ averages \sim 70% of the hollandite-forming waste system. Thus, BaO, Cs₂O, and the additive oxides are dilute with respect to TiO₂, which assures that two non-TiO₂ oxides are unlikely to interact whereas all will warrant a description of energetic interactions with TiO₂. As such, Gibbs energies for the solid phases stable in the pseudo-binary systems of the oxides of substitutional

elements with TiO₂ were incorporated into the database except for Al₂O₃, Ga₂O₃, and Cr₂O₃. The Al₂O₃-TiO₂³⁶² and Ga₂O₃-TiO₂³⁶³⁻³⁶⁵ systems were neglected as the intermediate compounds known to form in these systems, Al₄TiO₈, Al₂TiO₅, Ga₂TiO₅, and a series of Ga₄Ti_{m-4}O_{2m-2} phases where 9 < m < 25, are not stable at less than 1537 K, which is above temperatures of interest. Amoroso et al.³⁷ fabricated hollandites with Cr₂O₃ and did not report the formation of a chromium titanate minor phase, hence the Cr₂O₃-TiO₂ system was also neglected. The pseudo-binary system of Cs₂O-TiO₂ had not previously been assessed and, consequently, a new assessment of this system was conducted.

Minor phases that were observed to form³⁷ also led to the inclusion of intermediate compounds in the BaO-Fe₂O₃ and Al₂O₃-FeO systems.

7.4. Background

7.4.1. Cs₂O-TiO₂

Schmitz-Dumont & Reckhard³⁶⁶ conducted liquidus measurements for the Cs₂Ti₂O₅-TiO₂ system, reporting the formation of one intermediate stoichiometric compound, Cs₂Ti₄O₉. Grey et al.,³⁶⁷ however, did not observe the formation of Cs₂Ti₄O₉ but instead identified the compounds Cs₂Ti₅O₁₁ and Cs₂Ti₆O₁₃, which were subsequently confirmed by Grey et al.,³⁶⁸ Kwiatkowska et al.,³⁶⁹ Bursill et al.,³⁷⁰ Peres et al.,³⁷¹ and Kobyakov et al.³⁷² Thus, the Cs₂Ti₄O₉ compound, and by extension the liquidus data reported by Schmitz-Dumont & Reckhard,³⁶⁶ was neglected while Cs₂Ti₅O₁₁ and Cs₂Ti₆O₁₃ were included in the assessment of the Cs₂O-TiO₂ system. Grey et al.,³⁶⁷ were unable to experimentally determine the liquidus boundary in the analyzed 75-100 mol% TiO₂ region of the Cs₂O-TiO₂ system due to Cs volatilization, although phase transition temperatures were reported as follows: Cs₂Ti₂O₅ + Cs₂Ti₅O₁₁ \rightarrow Cs₂Ti₅O₁₁ + melt = 1117

K, $Cs_2Ti_5O_{11} + melt \rightarrow Cs_2Ti_6O_{13} + melt = 1373$ K, and $Cs_2Ti_6O_{13} + melt \rightarrow TiO_2 + melt$ = 1405 K. Lu & Jin³⁷³ summarized TiO₂ melting temperatures measured in varied atmospheres, ultimately adopting the 2185±10 K melting point measured for a near stoichiometric TiO_{1.999} sample in a pure oxygen atmosphere. This melting point as well as the reported 763 K Cs₂O melting temperature^{374, 375} were used in the Cs₂O-TiO₂ system assessment.

7.4.2. Hollandite

Amoroso et al.^{28, 37} fabricated hollandite phases by melt processing to determine the impact of Cr, Al, and Fe additives on the stability and melting temperature in both single-phase³⁷ and multi-phase (MP) studies.²⁸ In both, the hollandite samples were heat treated at a constant temperature of 1773 K for 20 minutes and then allowed to cool in the powered off furnace,^{28, 37} with cooling rates reported to drop from 60 K/min to 15 K/min by ~1473 K.² While the Fe-containing single phase hollandites (SPH) completely melted, Cr-Al-Fe (CAF) SPH samples only exhibited partial melting and Cr-SPH samples did not melt at all but were instead sintered at 1773 K (Section 7.5.4).¹³ Dandeneau et al.³⁸ also fabricated a melt processed multi-phase waste form with a targeted composition equivalent to the CAF-MP composition of Amoroso et al.,²⁸ hence the ensuing discussion is applicable to both the Amoroso et al.²⁸ and Dandeneau et al.³⁸ studies. The SPH study targeted three hollandite nominal compositions that were fabricated in air and a 1% H₂ reducing atmosphere,³⁷ which will be designated as SPH and SPHR, respectively. Ti metal and TiO₂ were also added to some samples prior to synthesis,³⁷ which will be designated as SPH-Ti and SPHR-Ti, respectively. Amoroso et al.³⁷ determined the stoichiometry of the fabricated hollandite compositions through use of inductively coupled plasma (ICP) analysis as well

as the minor phases that formed in addition to hollandite. The MP hollandite study conducted by Amoroso et al.²⁸ differed from the SPH study³⁷ by incorporating additional oxides into samples that could be targeted by facilities operating to produce a MP ceramic waste form. The MP study targeted the same hollandite nominal compositions as the SPH study, and, consequently, the amounts of the oxides that formed the hollandite phase as listed in Table 5 of Amoroso et al.²⁸ were used as a basis in this work (Table 7.1). The ratio of Fe⁺²/(Fe⁺² + Fe⁺³) for the CAF containing hollandites differed between the SPH and MP studies; thus, the SPH ratios were adopted in this work (Table 7.1). Also, the SPH Al₂O₃ quantities indicated in the Amoroso et al.³⁷ Table 2 footnotes were adopted. The waste compositions implemented in this work for the SPH hollandites³⁷ fabricated containing only the Fe additive were derived by adopting the Cr₂O₃ compositions used by Amoroso et al.²⁸ and then substituting Fe₂O₃ and FeO for Cr₂O₃ while retaining the Fe⁺²/(Fe⁺² + Fe⁺³) ratio of the SPH study.³⁷

Xu et al.^{30, 35} used solid-state reaction and sol-gel methods to fabricate hollandites. Both studies employed final heat treatments of 1473 to 1523 K for 2 to 3 hours. Aubin-Chevaldonnet et al.³⁶ used a solid-state reaction to form oxide pellets that were calcined and sintered at 1473 K for 30 hours in air. Costa et al.³⁶¹ prepared hollandite samples by first mixing, heating, and evaporating citrate solutions before ultimately forming and heat treating pellets at 1523 K for 3 hours. Database calculations were conducted at each of these final heat treatment temperatures for comparison with the phase equilibria reported in these studies. Similarly, the reported 1473 K temperature at which the cooling rate of melt processed samples started slowing was adopted as defining the equilibrium state and, as such, calculations for comparison with melt processed sample results were conducted at

this temperature. Xu et al.,^{30, 35, 40} Aubin-Chevaldonnet et al.,³⁶ and Costa et al.³⁶¹ synthesized hollandites with the additives Ga, Al, Cr, and Fe, hence the database was developed to include the oxides of these additives..

Wu et al.³⁵ derived a standard enthalpy of formation using drop solution calorimetry for a hollandite phase with the composition Ba_{1.18}Cs_{0.21}Al_{2.44}Ti_{5.53}O₁₆. Costa et al.³⁶¹ employed the same approach for the Ba_{1.24}Al_{2.48}Ti_{5.52}O₁₆ and Ba_{1.24}Fe_{2.48}Ti_{5.52}O₁₆ compositions. Xu et al.³⁰ and Wen et al.³⁹ used density functional theory (DFT)^{65, 376} to calculate formation enthalpies at 0 K from the Ba to Cs endmember of two-thirds A-site occupied hollandites containing Al and Ga. The data reported by Xu et al.³⁰ was neglected as the DFT calculations were refined with improved computational parameterization by Wen et al.³⁹ Additionally, Wu et al.³⁷⁷ measured heat capacities of a series of barium aluminotitanate hollandites including a Cs-substituted phase with the composition Ba_{1.18}Cs_{0.21}Al_{2.44}Ti_{5.53}O₁₆ at 1.2 mPa from 2 to 300 K.

7.5. Thermodynamic modeling and optimization

7.5.1. CEF and TSPIL models

The thermodynamic representations were optimized using the FactSage⁴³ software to obtain values for the CEF and TSPIL models for the solid solutions and liquid phases. The CEF is a sublattice-based model that can account for the non-stoichiometry of a substitutional or interstitial solid solution based on lattice site occupancies, which can include vacancies and interstitial sites. An example CEF three sublattice model can be represented as:

 $(A,B)_k(D,E,F)_l(G)_m$

where A-G are elements distributed on one of the three possible lattice sites, and the subscripts k, l, and m are the sublattice stoichiometric coefficients. The CEF Gibbs energy function is defined in Hillert.⁴¹

The TSPIL model is based on the concept that in ionic liquid phases each atom bears a charge and thus is surrounded by unlike charged atoms resulting in atomic ordering. This ordering can be treated as two sublattices, one containing only cations and the other anions, vacancies, and neutral species (C, A, Va, and B, respectively) in:

$$(C_i^{+\nu_i})_P(A_j^{-\nu_j}, Va, B_k^0)_Q$$

where the indices i, j, and k represent specific sublattice constituents. The superscripts $+v_i$ and $-v_j$ represent the charge of the ith or jth cation or anion, respectively, while 0 indicates a neutral species. Electroneutrality is maintained by allowing the stoichiometric coefficients (P and Q) to vary as a function of site fractions.

As noted in Utlak & Besmann,¹⁴⁸ the molar Gibbs energy of a phase modeled using the CEF can be expressed as:

$$G_{\rm m} = \Sigma \Delta_{\rm f} \,^{\rm o} \, G_{\rm end} \Pi y_{\rm J}^{\rm s} + RT \Sigma \Sigma n^{\rm s} y_{\rm J}^{\rm s} \ln y_{\rm J}^{\rm s} + {}^{\rm E} \, G_{\rm m} \tag{7.1}$$

where $\Delta_{f} \circ G_{end}$ is the standard molar Gibbs energy of formation of an end-member, y_{J}^{s} is the site fraction of the Jth constituent in the nth sublattice, and n^{s} is the stoichiometric coefficient of the nth sublattice. The first, second, and third terms of eq. (7.1) are the Gibbs energy surface of reference, ideal entropy of mixing, and excess Gibbs energy of mixing, respectively.

The excess Gibbs energy, which accounts for the departure from ideal mixing of species on the same sublattice due to attraction or repulsion of the mixing constituents,⁷² can be described with a generalized regular solution expression:

$${}^{E} G_{m} = \Pi y_{J}^{s} \Sigma y_{B}^{t} L_{A,B:D:G} \dots + \Pi y_{J}^{s} \Sigma \Sigma y_{B}^{t} y_{D}^{u} L_{A,B:D,E:G} \dots + \dots$$
(7.2)

where the subscripts A, B, D, E, and G as well as superscripts t and u refer to the constituents in a sublattice and the sublattice designations, respectively, in a generalized CEF formulation for a three sublattice phase $(A, B)_{k}^{t}(D, E, F)_{l}^{u}(G)_{m}^{v}$. The subscripts *k*, *l*, and *m* in the generalized formula represent the sublattice stoichiometric coefficients. The commas separating constituents in the interaction parameter designations of eq. (7.2) indicate the interactions between constituents on the same sublattice, whereas the colons separate sublattices. Equation (7.2) can be expanded to describe, in principle, constituent interactions of a multicomponent system of any order.

The interaction parameters of eq. (7.2) can be expressed as a Redlich-Kister (RK) power series²⁶ in terms of site fractions. As an example, for a binary interaction between the A and B species of eq. (7.2)

$$L_{A,B:D:G} = \sum_{k=0}^{n} {}^{k}L_{A,B:D:G} (y_{A} - y_{B})^{k}$$
(7.3)

where D and G are constituents on each of the second and third sublattices, y represents the site fraction of the subscripted sublattice constituent, and k is the order of the expansion. The interaction parameter L on the right-hand side of eq. (7.3) can be expressed as a polynomial in temperature with the form:

$${}^{k}L_{A,B:D:G} = A + B \cdot T + C \cdot T \ln(T) + D \cdot T^{2} + E \cdot T^{3} + F \cdot T^{-1}$$
(7.4)

where *T* is the temperature in kelvin and the variables *A*, *B*, *C*, *D*, *E*, and *F* are coefficients determined by optimizing the model Gibbs energy function to thermochemical and/or phase equilibria data. In practice, only the *A* and *B* coefficients of eq. (7.4) are generally needed in an assessment unless experimental data can justify additional coefficients.²⁶

The molar Gibbs energy in the TSPIL model is:

$$G_{\rm m} = \Sigma \Sigma y_{C_{\rm i}} y_{A_{\rm j}} \circ G_{C_{\rm i}:A_{\rm j}} + Q \left(y_{\rm Va} \Sigma y_{C_{\rm i}} \circ G_{C_{\rm i}} + \Sigma y_{B_{\rm k}} \circ G_{B_{\rm k}} \right)$$

$$+ RT \left[P \Sigma y_{C_{\rm i}} \ln y_{C_{\rm i}} + Q \left(\Sigma y_{A_{\rm j}} \ln y_{A_{\rm j}} + y_{Va} \ln y_{Va} + \Sigma y_{B_{\rm k}} \ln y_{B_{\rm k}} \right) \right] + {}^{\rm E} G_{\rm m}$$

$$(7.5)$$

where ${}^{o}G_{C_{i}:A_{j}}$ is the Gibbs energy of formation for $v_{i} + v_{j}$ moles of atoms of the endmember $C_{i}A_{j}$ while ${}^{o}G_{C_{i}}$, and ${}^{o}G_{B_{k}}$ are the values for C_{i} and B_{k} , respectively. The first, second, and third terms of eq. (7.5) are the Gibbs energy surface of reference for all possible types of constituents, the random configurational entropy on each sublattice, and the excess Gibbs mixing energy, which can be expressed as:

$${}^{E} G_{m} = \Sigma \Sigma \Sigma y_{i_{1}} y_{i_{2}} y_{j} L_{i_{1}, i_{2}:j} + \Sigma \Sigma \Sigma y_{i} y_{j_{1}} y_{j_{2}} L_{i:j_{1}, j_{2}} + \Sigma \Sigma y_{i} y_{j_{1}} y_{Va} L_{i:j_{1}, Va} + \dots$$
(7.6)

The interaction parameters again can be expressed as a Redlich-Kister power series (eq. (7.3)).

7.5.2. Stoichiometric phases

As observed by Hanaor & Sorrell³⁷⁸ based on the results of cited studies, rutile is the equilibrium polymorph of TiO₂. Hence, a Gibbs energy description of the rutile polymorph has been incorporated in the database (Table 7.2). Intermediate stoichiometric phases for the BaO-TiO₂,³⁷³ Cs₂O-TiO₂,^{366, 367} FeO-TiO₂,³⁷⁹ and Fe₂O₃-TiO₂³⁸⁰ systems were included in the database. In addition, Amoroso et al.³⁷ observed the formation of the BaFe₁₂O₁₉ and FeAl₂O₄ phases. Consequently, these phases as well as the remaining intermediate line compounds known to be stable in the BaO-Fe₂O₃³⁸¹ system were also incorporated into the database (Table 7.2). While the only intermediate phase in the Al₂O₃-FeO^{80, 222, 243, 323, 382, 383} system, FeAl₂O₄, has previously been represented as a stoichiometric compound and a solid solution, in this work a line compound was assumed, which is a sufficient approximation as FeAl₂O₄ is a minor phase due to the low of Al₂O₃

and FeO content in relevant waste compositions (Table 7.1). Values from the FactSage 7.2 databases cited in Table 7.2 from sources such as NIST-JANAF thermochemical tables²⁰⁹ were used with slight modifications as necessary from the assessments.

The three stoichiometric compounds Cs₂Ti₂O₅, Cs₂Ti₅O₁₁, and Cs₂Ti₆O₁₃ were optimized as part of the Cs₂O-TiO₂ system assessment. The Neumann-Kopp rule²⁰⁴ was applied to derive endmember heat capacities and estimated values for standard entropies with the latter values confirmed to be within the entropic range predicted by Latimer's method.^{64, 205} Standard formation enthalpies were optimized to the phase equilibria data discussed in Section 7.4.1.

The CsAlTiO₄ and Cs₂AlGaTi₂O₈ line compounds were observed to form as secondary phases in Ba-Cs-Fe and Bs-Cs-Ga hollandites fabricated by Amoroso et al.³⁷ and Aubin-Chevaldonnet et al.,³⁶ respectively, and thus, included in the database. Gibbs energy functions for the CsAlTiO₄ and Cs₂AlGaTi₂O₈ phases were determined from heat capacities and standard entropies derived in the same manner as those for the cesium titanate compounds. Standard enthalpies of formation were then optimized to allow experimentally observed phase assemblages to be computed to form.

7.5.3. Hollandite solid solution

The hollandite sublattice model was developed to coincide with the hollandite general formula:^{36, 37} $(Ba_xCs_y)(M,Ti)_{2x+y}^{+2,+3,+4}(Ti)_{8-2x-y}^{+4}O_{16}, x + y < 2$ where M represents a divalent, trivalent, or tetravalent cation, which resulted in the CEF four sublattice formalism:

 $(Ba^{+2},Cs^{+1},Va)_{2}^{\alpha}[Ti^{+4},Cr^{+3},Al^{+3},Fe^{+3},Fe^{+2},Ga^{+3}]_{4}^{\beta}\{Ti^{+4}\}_{4}\langle O^{-2}\rangle_{16}$

As x + y < 2, the first and second sublattice stoichiometric coefficients of 2 and 4, respectively, bound all potential stoichiometric values of the first and second general formula terms (Ba_xCs_y) and (M,Ti)^{+2,+3,+4}_{2x+y}, respectively. The second and third sublattice stoichiometric coefficients sum to 8 to be consistent with the hollandite crystallographic tunnel sites composed of octahedrally-coordinated M-site cations.^{30, 36} Thus, with the variation of sublattice species site fractions, the hollandite CEF model encompasses the range of possible hollandite compositions.

7.5.3.1. Optimization of hollandite CEF model

The Neumann-Kopp rule²⁰⁴ was applied to derive endmember heat capacities and estimated values for standard entropies with the latter values also approximated by the entropic range predicted by Latimer's method.^{64, 205} Endmember standard formation enthalpies (Table 7.3) were then optimized to the hollandite targeted compositions of the studies discussed in Section 7.4.2 for the respective waste compositions listed in Table 7.1. An example of the Gibbs energy relation for a neutral endmember such as Ba₂Fe₄Ti₄O₁₆ as generated by this approach is seen in eq. (7.7).

$${}^{o}G_{\text{Ba}_{2}\text{Fe}_{4}\text{Ti}_{4}\text{O}_{16}} = 2{}^{o}G_{\text{BaO}(s)} + 2{}^{o}G_{\text{Fe}_{2}\text{O}_{3}(s)} + 4{}^{o}G_{\text{TiO}_{2}(s)} + \Delta H_{\text{opt},298.15 \text{ K}}$$
(7.7)

where ${}^{o}G$ represents the standard Gibbs energy function of a specified oxide and $\Delta H_{opt,298.15K}$ is the enthalpy of formation at 298.15 K obtained from optimization to experimental data.

Gibbs energies of charged endmembers were defined as per the example of eq. (7.8) for $Cs_2Al_4Ti_4O_{16}^{-2}$.

 ${}^{\circ}G_{Cs_{2}Al_{4}Ti_{4}O_{16}^{-2}} = {}^{\circ}G_{Cs_{2}O(s)} + 2 {}^{\circ}G_{Al_{2}O_{3}(s)} + 4 {}^{\circ}G_{TiO_{2}(s)} + 2 {}^{\circ}G_{Ti_{3}O_{5}(s)} - 3 {}^{\circ}G_{Ti_{2}O_{3}(s)} + \Delta H_{opt,298.15 K}$ (7.8)

www.manaraa.com

where ${}^{o}G_{\text{Ti}_{3}\text{O}_{5}(s)}$ and ${}^{o}G_{\text{Ti}_{2}\text{O}_{3}(s)}$ were included to obtain the correct oxygen stoichiometry and oxidation state.

Six RK parameters in the hollandite CEF were used to obtain representative Gibbs energy functions for the targeted compositions. Equation (7.9) defines the 298 K molar Gibbs energy function of the optimized hollandite solid solution with endmember and RK parameter values listed in Table 7.3.

$$\begin{split} G_{m}^{hollandite} &= y_{Ba^{+2}}^{\alpha} y_{Ti^{+4}}^{\beta} \circ G_{Ba_{2}Ti_{8}O_{16}^{++}} + y_{Cs^{+1}}^{\alpha} y_{Ti^{+4}}^{\beta} \circ G_{Cs_{2}Ti_{8}O_{16}^{++}} + y_{Va}^{\alpha} y_{Ti^{+4}}^{\beta} \circ G_{Ti_{8}O_{16}} (7.9) \\ &+ y_{Ba^{+2}}^{\alpha} y_{Cr^{+3}}^{\beta} \circ G_{Ba_{2}Cr_{4}Ti_{4}O_{16}} + y_{Cs^{+1}}^{\alpha} y_{Cr^{+3}}^{\beta} \circ G_{Cs_{2}Cr_{4}Ti_{4}O_{16}^{-+}} \\ &+ y_{Va}^{\alpha} y_{Cr^{+3}}^{\beta} \circ G_{Cr_{4}Ti_{4}O_{16}^{++}} + y_{Ba^{+2}}^{\alpha} y_{Al^{+3}}^{\beta} \circ G_{Ba_{2}Al_{4}Ti_{4}O_{16}} \\ &+ y_{Cs^{+1}}^{\alpha} y_{Al^{+3}}^{\beta} \circ G_{Cs_{2}Al_{4}Ti_{4}O_{16}^{-+}} + y_{Cs^{+1}}^{\alpha} y_{Fe^{+3}}^{\beta} \circ G_{Cs_{2}Fe_{4}Ti_{4}O_{16}^{-+}} \\ &+ y_{Gs^{+1}}^{\alpha} y_{Fe^{+3}}^{\beta} \circ G_{Ba_{2}Fe_{4}Ti_{4}O_{16}} + y_{Cs^{+1}}^{\alpha} y_{Fe^{+2}}^{\beta} \circ G_{Cs_{2}Fe_{4}Ti_{4}O_{16}^{-+}} \\ &+ y_{Cs^{+1}}^{\alpha} y_{Fe^{+3}}^{\beta} \circ G_{Fe_{4}Ti_{4}O_{16}^{-+}} + y_{Gs^{+1}}^{\alpha} y_{Fe^{+2}}^{\beta} \circ G_{Fe_{4}Ti_{4}O_{16}^{-+}} \\ &+ y_{Cs^{+1}}^{\alpha} y_{Fe^{+3}}^{\beta} \circ G_{Ba_{2}Ca_{4}Ti_{4}O_{16}^{-+}} + y_{Gs^{+1}}^{\alpha} y_{Ga^{+3}}^{\beta} \circ G_{Cs_{2}Ca_{4}Ti_{4}O_{16}^{-+}} \\ &+ y_{Cs^{+1}}^{\alpha} y_{Ga^{+3}}^{\beta} \circ G_{Ba_{2}Ca_{4}Ti_{4}O_{16}^{-+}} + y_{Cs^{+1}}^{\alpha} y_{Ga^{+3}}^{\beta} \circ G_{Cs_{2}Ca_{4}Ti_{4}O_{16}^{-+}} \\ &+ y_{a}^{\alpha} y_{Ga^{+3}}^{\beta} \circ G_{Ba_{2}Ca_{4}Ti_{4}O_{16}^{-+}} + y_{Cs^{+1}}^{\alpha} y_{Ga^{+3}}^{\beta} \circ G_{Cs_{2}Ca_{4}Ti_{4}O_{16}^{-+}} \\ &+ y_{a}^{\alpha} y_{Ga^{+3}}^{\beta} \circ G_{Ga_{4}Ti_{4}O_{16}^{-+}} \\ &+ y_{a}^{\alpha} y_{Ga^{+3}}^{\beta} \circ G_{Ga_{4}Ti_{4}O_{16}^{-+}} \\ &+ y_{Cs^{+1}}^{\alpha} y_{a}^{\alpha} y_{Ba^{+2}}^{\beta} + 2y_{Cs^{+1}}^{\alpha} \ln y_{Cs^{+1}}^{\beta} + 2y_{Va}^{\alpha} \ln y_{Va}^{\beta} + 4y_{Fe^{+3}}^{\beta} \ln y_{Fe^{+3}}^{\beta} + 4y_{Fe^{+2}}^{\beta} \ln y_{Fe^{+2}}^{\beta} \\ &+ RT \left(y_{Ba^{+2}}^{\alpha} \ln y_{Ga^{+3}}^{\beta} \right) + y_{Cs^{+1}}^{\alpha} y_{a}^{\alpha} y_{Cr^{+3}}^{\beta} \circ L_{Cs^{+1},Va;Cr^{+3};Ti^{++;O^{-2}}} \\ &+ 4y_{Ga^{+3}}^{\beta} \ln y_{Ga^{+3}}^{\beta} \right) + y_{Cs^{+1}}^{\alpha} y_{a}^{\beta} y_{Cr^{+3}}^{\beta} \circ L_{Cs^{+1},Va;Cr^{+3};Ti^{+4};O^{-2}} \\ &+ y_{Cs^{+1}}^{\alpha} y_{a}^{\alpha} y_{Fe^{+3}}^{\beta} \circ L_{Cs^{+1},Va;H^{+3};Ti^{+4};O^{-2}} \\ &+ y_{Cs^{+1}}^{\alpha} y_{a}^{\alpha} y_{Fe^{+3}}^{\beta} \delta L_{Cs^{+1},Va;Fe^{+3};Ti^{+4};O^{-2}} \\$$

$$+ y^{\alpha}_{Cs^{+1}} y^{\beta}_{Cr^{+3}} y^{\beta}_{Fe^{+3}} {}^{0}L_{Cs^{+1}:Cr^{+3},Fe^{+3}:Ti^{+4}:O^{-2}} + y^{\alpha}_{Cs^{+1}} y^{\beta}_{Al^{+3}} y^{\beta}_{Fe^{+3}} {}^{0}L_{Cs^{+1}:Al^{+3},Fe^{+3}:Ti^{+4}:O^{-2}} + y^{\alpha}_{Ba^{+2}} y^{\beta}_{Cr^{+3}} y^{\beta}_{Fe^{+2}} {}^{0}L_{Ba^{+2}:Cr^{+3},Fe^{+2}:Ti^{+4}:O^{-2}}$$

7.5.4. Liquid phase of hollandite-forming system

As discussed in Section 7.4.2, the hollandite sample fabrication methods of solidstate reaction, sol-gel, and combustion synthesis with final sintering at temperatures of 1473 to 1523 K for 3 to 30 hours did not provide liquid phase data.^{30, 35, 36, 361} Hence, the liquid phase was not addressed. Additionally, while Amoroso et al.³⁷ noted that Fecontaining samples exhibited signs of melting when melt processing was attempted, inspection of CAF samples indicated only near or partial melting occurred, and Crcontaining samples showed minimal signs of melting, formed largely from solid-state reactions. Thus, only solid-state behavior of the CAF and Cr samples was considered.

As the Fe samples were not rapidly quenched but instead allowed to naturally cool in the powered off furnace,³⁷ the phases observed were deemed to be the equilibrium state assemblage.

7.5.4.1. Liquid phase of Cs₂O-TiO₂ system

While it was largely unnecessary to assess the melts for the constituent systems, the exception was Cs_2O -TiO₂. A TSPIL model was required to allow consideration of the liquid phase as the solidus/liquidus values were useful in generating the molar Gibbs energies of the intermediate stoichiometric phases. The liquid phase was modeled such that Cs^{+1} and Ti^{+4} cations appear on the first sublattice and the O^{-2} anion resides on the second sublattice:

 $(Cs^{+1}, Ti^{+4})_P(O^{-2})_Q$

Grey et al.³⁶⁷ were unable to measure liquidus data due to high Cs volatility, and the liquidus data reported by Schmitz-Dumont & Reckhard³⁶⁶ was neglected as the measurements indicated the formation of Cs₂Ti₄O₉, which did not agree with other experimental studies of the C₂O-TiO₂ system.³⁶⁷⁻³⁷² As such, estimation of the Cs₂O-TiO₂ liquidus curve was required, which was based on the analogous K₂O-TiO₂ phase diagram reported by Eriksson & Pelton.³⁷⁹ As K₂O and Cs₂O are alkali metal oxides with no polymorphs, it is reasonable to assume that the phase equilibrium behavior of the Cs₂O-TiO₂ system can be generally approximated by the K₂O-TiO₂ system. Inspection of the K₂O-TiO₂ phase diagram computed by Eriksson & Pelton³⁷⁹ indicates that the liquidus curve continuously decreases from 100 to 36 mol% TiO₂. Intermediate line compounds at TiO₂ mol fractions > 50% are seen to melt incongruently, and a eutectic point forms at 20 mol% TiO₂. The TSPIL model for the Cs₂O-TiO₂ system was optimized to agree with the trends exhibited by the K₂O-TiO₂ phase diagram, which required a single RK parameter (eq. (7.10), values listed in Table 7.3).

$$G_{\rm m}^{\rm liquid} = y_{\rm Cs}^{+1} y_{\rm O}^{-2} {}^{\rm o} G_{\rm Cs}^{+1} \cdot {}_{\rm O}^{-2} + y_{\rm Ti}^{+4} y_{\rm O}^{-2} {}^{\rm o} G_{\rm Ti}^{+4} \cdot {}_{\rm O}^{-2} + x_{\rm Ti}^{+4} y_{\rm O}^{-2} + y_{\rm Ti}^{+4} \cdot {}_{\rm O}^{-2} + y_$$

7.6. Results and discussion

7.6.1. Cs₂O-TiO₂ pseudo-binary system

The available Cs_2O-TiO_2 crystalline phase data consists of $Cs_2Ti_2O_5$, $C_2Ti_5O_{11}$, and $Cs_2Ti_6O_{13}$ incongruent melting temperatures as well as the Cs_2O and TiO_2 congruent melting temperatures. The phase diagram resulting from the combined optimizations of the liquid, $Cs_2Ti_2O_5$, $C_2Ti_5O_{11}$, and $Cs_2Ti_6O_{13}$ Gibbs energy functions (Fig. 7.1) indicates that

all melting temperatures were well reproduced. Altogether with the analogous features of the K₂O-TiO₂ phase diagram.

7.6.2. Thermodynamic database of hollandite-forming oxide system

Results of the hollandite CEF optimizations are displayed in Table 7.4 & Table 7.5, which contain targeted, measured, and calculated hollandite compositions (Table 7.4) as well as calculated mass fractions of secondary phases (Table 7.5). Experimentally observed secondary phases for each composition are also listed in Table 7.5. Database calculations to determine non-melt processed hollandite compositions were conducted at the temperatures listed in Table 7.4, which are sintering temperatures for hollandite pellets fabricated in the studies discussed in Section 7.4.2. Again, the reported 1473 K temperature at which the cooling rate of melt processed samples started slowing was adopted as the equilibrium temperature. Equilibrium calculations using assessed thermochemical models and values predict the hollandite phase is stable for the experimental compositions of Amoroso et al.,³⁷ Xu et al.,^{35,40} Aubin-Chevaldonnet et al.,³⁶ and Costa et al.³⁶¹ (Table 7.4).

Analysis of the optimization results for the hollandite phases fabricated by Amoroso et al.³⁷ indicates that calculated stoichiometries overall agree well with measured compositions with minor deviations for melt processed samples. As discussed by Amoroso et al.,³⁷ melt processed hollandite samples prepared with Fe₂O₃ contained FeO and Al₂O₃ either from the crucible used to prepare the sample or added to the batch in the case of CAF samples, which caused FeAl₂O₄ to precipitate. Regardless, the computed phase equilibria confirm the observation of secondary phase FeAl₂O₄ in all Fe-containing waste types (Table 7.5). Amoroso et al.³⁷ concluded that the Fe and CAF hollandite samples would be

deficient in Fe and thus drive the hollandite compositions off stoichiometry, which was observed in all Fe- and CAF-SPH computed compositions (Table 7.4).

It was experimentally observed that the addition of Cr and a Ti/TiO₂ buffer stabilized the hollandite structure and increased Cs incorporation.³⁷ The enhancement of Cs content can be ascribed to the suppression of the formation of the parasitic Cs secondary phase CsAlTiO₄.³⁷ Equilibrium calculations confirmed these experimental results as CsAlTiO4 was not stable for any Cr-SPH formulations, and the Cr-SPH-Ti and CAF-SPH-Ti hollandites tolerated more Cs than the other respective melt processed waste compositions. Secondary phase formation was suppressed in hollandite compositions containing solely Cr as an additional element with only excess TiO₂ observed in samples.³⁷ Computations generally agreed with TiO₂ forming along with minor amounts of Cr₂O₃ (Table 7.5). In contrast, melt processed Fe and CAF waste types were observed to precipitate titanate and aluminate phases as well as possibly CsAlTiO₄.³⁷ Equilibrium calculations generally agreed as Fe waste type compositions yielded titanate and aluminate phases as well as TiO₂ and CsAlTiO₄ while the CAF waste types were computed to predominantly form TiO₂ and FeAl₂O₄ as secondary phases (Table 7.5). XRD measurements conducted by Amoroso et al.³⁷ detected a precipitated CsAlTiO₄ phase in only one of the four CAF samples, and thus a computed result indicating CsAlTiO₄ is not stable in these systems is reasonable. Similarly, as BaFe₁₂O₁₉ was not detected by SEM analysis, the lack of the computed BaFe12O19 phase in Fe-SPHR and CAF-SPHR compositions was deemed reasonable.

Computed hollandite phase stoichiometries agreed well with targeted and/or measured hollandite phase compositions fabricated by Xu et al.,^{35, 40} Aubin-Chevaldonnet

205

et al.,³⁶ and Costa et al.³⁶¹ (Table 7.4). Aubin-Chevaldonnet et al.³⁶ reported that Ba and Cs containing hollandite samples with only the Al⁺³ or Cr⁺³ substitutional elements contained only a fraction of the Cs targeted. A possible cause of this result noted by Aubin-Chevaldonnet et al.³⁶ was that a high fraction of Cs vaporized during the solid-state reaction synthesis process and caused formation of low density samples. Comparatively, the Al-SPH-1 hollandites fabricated by Xu et al.³⁵ via a sol-gel method had the expected Cs content. Thus, the equivalency of the calculated and targeted Al-SPH-3 Cs fraction is acceptable (Table 7.4).^{36, 37} Also, good agreement of computed results with the Cr-SPH measured compositions by Amoroso et al.³⁷ indicates that the hollandite model accurately reflects the less than expected Cs content observed by Amoroso et al.³⁷ and Aubin-Chevaldonnet et al.³⁶

Secondary phases computed to form were generally consistent with experimental observations for non-melt processed waste types (Table 7.5). The CsGaSi_{0.4}Ti_{0.6}O₄ phase that was observed by Aubin-Chevaldonnet et al.³⁶ to precipitate in the Ga-SPH-6 hollandite was omitted in equilibrium calculations as it was likely due to SiO₂ contamination from the silicate glass-ceramic balls used in an attrition mill as noted by the authors. The CsAl_{0.5}Ga_{0.5}TiO₄ phase, however, was included in the assessment of the AG-SPH-2 hollandite with the calculated result indicating that the parasitic compound reduced the fraction of Cs expected in the hollandite phase, which agreed with the experimental result (Table 7.4). Al-SPH-1 was experimentally observed to have no secondary phases while Al-SPH-3 with a similar composition was reported to form Ba₂Ti₉O₂₀ and TiO₂ alongside hollandite.^{35, 36} A barium titanate phase, BaTiO₃(β), was calculated to be stable for this general composition. While Fe₂TiO₅ and BaTi₄O₉ were identified as minor phases in Fe-

SPH-3 prepared with zirconia/silicate glass-ceramic attritor balls. Aubin-Chevaldonnet et al.³⁶ reported that BaTi₄O₉ was not detected and the amount of Fe₂TiO₅ decreased in samples milled with yttrium-stabilized zirconia attritor balls, which indicates that the formation of these secondary phases was affected by sample preparation. Given these issues, it is reasonable that Fe-SPH-3 is computed to be single phase. The three minor phases containing Y, Zr, O; Cs, Si, O; and Al, O in AF-SPH-2 were likely a result of contamination from the attritor mill glass-ceramic balls as discussed by Aubin-Chevaldonnet et al.³⁶ However, as the AF-SPH-2 composition is similar to the melt processed Fe and CAF compositions but without Cr to suppress CsAlTiO₄ formation (Table 7.1), a relatively minor amount of CsAlTiO₄ is calculated to be stable (Table 7.5). Computations determined Cs was incorporated in the AF-SPH-2 hollandite composition and thus are consistent with experimental observations.

Table 7.1 lists the component compositions assumed in computing standard enthalpies of formation for comparison with experimental measurements and DFT results (Table 7.3). Waste types for this purpose are identified with the label inclusion of DS (drop solution) or DFT. Measured/DFT derived hollandite oxide formation enthalpies were converted to molar or 'elemental' enthalpies by adding the sum of the standard formation enthalpies of the constituent oxides listed in Table 7.3 to the Table 7.6 hollandite oxide formation enthalpies. Results are displayed in Table 7.6 as well as Fig. 7.2.

Fe-SPH computed enthalpies were extrapolated to the Cs_{1.35}Fe_{1.35}Ti_{6.65}O₁₆ endmember. Computed values agree well with experimental measurements and DFT calculations for Al-SPH-DS/DFT and Fe-SPH-DS. Discrepancies exist between database calculations and Ga-SPH-DFT values near the Ba endmember with both data sets

converging at a Cs stoichiometry of 1 before diverging at 1.33 (Table 7.6 & Fig. 7.2). Hollandite CEF optimized parameters were generated to accurately represent measured compositions, thus Ga-SPH-DFT_calc enthalpy values are a result of targeting the Ga-SPH-1–5 and AG-SPH-1/2 compositions. Further adjustment of CEF Ga-containing endmembers would cause disagreement in Ga-SPH compositions; hence a compromise was required to obtain reasonable values of calculated compositions and experimental and DFT derived formation enthalpies. The Cr-SPH-BASE Cs endmember extends to a stoichiometric Cs value of 1.38, which is also a result of a compromise requiring adjustment of the ${}^{o}G_{Cs_2Cr_4Ti_4O_{16}^{-2}}$ endmember optimized standard formation enthalpy to approximate the Cs_{1.33}Ga_{1.33}Ti_{6.67}O₁₆ composition for the Cr-SPH-BASE-5 waste type while suppressing CsAlTiO₄ formation in the melt processed Cr-SPH waste types.

As discussed in Section 7.4.2, Wu et al.³⁷⁷ measured the heat capacity at a constant pressure of 1.2 mPa for the hollandite phase Ba_{1.18}Cs_{0.21}Al_{2.44}Ti_{5.53}O₁₆. Fig. 7.3 displays the computed hollandite heat capacity for the Al-SPH- C_p composition (Table 7.1), which consists of the oxides BaO, Cs₂O, TiO₂, and Al₂O₃ in amounts representative of the hollandite stoichiometry Ba_{1.18}Cs_{0.21}Al_{2.44}Ti_{5.53}O₁₆. Although a minor amount of Al₂O₃(corundum) and BaTiO₃(β) is computed to form with hollandite at this composition, the minimal stoichiometric difference from that measured phase was negligible, providing good agreement between measured and computed heat capacity values. The low temperature is due to extrapolating heat capacity functions of component oxides below 298 K which is outside of the reported range for the values (Section 7.5.3.1).

7.6.3. Extrapolation of hollandite compositions

A main benefit of thermochemical models of phases is the ability to extrapolate system behavior to compositional regions that have not been experimentally evaluated.²⁶ The developed database was so used to generate a 1473 K isothermal BaO-Cs₂O-TiO₂ pseudo-ternary diagram (Fig. 7.4) containing Cr₂O₃, Al₂O₃, Fe₂O₃, and FeO in amounts equivalent to CAF-SPH-1 (Table 7.1). The diagram phase regions have been defined in Table 7.7. Due to the complexity of Fig. 7.4, the smaller regions were not separately identified. Fig. 7.5 displays an expanded section of Fig. 7.4 in the high TiO₂, low BaO and Cs₂O region.

The database development approach described in Section 7.3 was designed to yield detailed equilibrium calculations in the high TiO₂ and low to moderate BaO and Cs₂O mole fraction region of a BaO-Cs₂O-TiO₂ pseudo-ternary diagram. Fig. 7.4 is thus truncated at 40 mol% TiO₂ and 60 mol% BaO and Cs₂O, which is a reasonable range to display as phase stabilities calculated beyond these mole fractions would be unreliable due to neglected secondary phases consisting exclusively of BaO, Cs₂O, and/or additive oxides.

The accurate computed phase equilibria and the relations that they embody can assist in development of hollandite-based waste sequestration phases, and most notably those that can effectively accommodate Cs. For example, Fig. 7.4 indicates secondary phases that are likely to form within a region, yet they can be seen to not necessarily impact the effectiveness of a waste form composition. This can, however, alert the developer to compositional regions containing a parasitic Cs secondary phase(s), and thus allow design of systems that avoid their formation, thereby maximizing effective hollandite waste loading. Additionally, waste compositions likely to yield a high fraction of hollandite can

be projected by targeting locations on a BaO-Cs₂O-TiO₂ isothermal diagram near a phase boundary of two regions that share hollandite as a stable phase or in a region with minimal secondary phases. Approaching a boundary results in amounts of secondary phases not stable in both regions reducing to zero close to the boundary thereby increasing the ratio of hollandite to total phases formed. The waste compositions and stable phase amounts of the Fig. 7.4 composition points near the shared boundary of regions 11 & 17 and in region 25, which contains only the secondary phases FeTiO₃ and Cr₂O₃, are shown in Table 7.1 & 3, respectively. According to the results in Table 7.8, phases within region 11 and adjacent regions are predicted to yield 96.6 and 92.5% hollandite, respectively. While region 25 has a lower predicted hollandite yield than region 17, the hollandite phase of region 25 is calculated to contain more Cs (Table 7.8), of which none is lost to a Cs parasitic phase. This is thus a good example of how equilibrium calculations can be used to optimize waste loading.

7.7. Conclusion

An assessed thermodynamic database has been developed that allows successful calculation of observed equilibrium behavior of hollandite-forming BaO-Cs₂O-TiO₂-Cr₂O₃-Al₂O₃-Fe₂O₃-FeO-Ga₂O₃ systems. The variable composition hollandite and related phases were modeled using the CEF with the TSPIL model used to represent the Cs₂O-TiO₂ system oxide melt. The assessment included titanate and aluminate compounds Gibbs energies generated in this work as well as the Cs parasitic phases CsAlTiO₄ and Cs₂AlGaTi₂O₈. The constructed database was then used to generate a partial 1473 K BaO-Cs₂O-TiO₂ pseudo-ternary diagram that included fixed fractions of additional expected waste stream elements in prospective waste-form hollandite phases. These calculations

extrapolate the phase equilibrium behavior of the hollandite-forming system to regions that have not been experimentally addressed, with such capability expected to be of substantial value to the development and evaluation of waste form compositions.

Future work will involve expanding the database to include oxides of additional waste elements and related titanate phases as well as non-titanate phases. These should include the oxides ZrO₂, CaO, Eu₂O₃, Y₂O₃, among others, and complex phases such as zirconolite and/or +2/+3 titanates to ultimately develop a database that supports the efforts on multiphase ceramic waste forms.

7.8. Acknowledgements

Research was conducted by the Center for Hierarchical Waste Form Materials (CHWM), an Energy Frontier Research Center (EFRC). Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0016574.

7.9. Tables

Wests trues?			Ο	xide amo	ount (mol	(10^2)		
waste type"	BaO	Cs ₂ O	TiO ₂	Cr ₂ O ₃	Al ₂ O ₃	Fe ₂ O ₃	FeO	Ga ₂ O ₃
Fe-SPH-128, 37	8.17	0.601	61.4	0	7.20	6.66	5.20	0
Fe-SPHR ^{28, 37}	7.42	0.511	54.8	0	9.50	0	18.3	0
Fe-SPH-Ti ^{28, 37}	6.57	0.712	60.6	0	14.2	5.89	3.07	0
Cr-SPH-1 ^{28, 37}	9.00	0.662	67.6	10.4	0.296	0.041	0.030	0
Cr-SPHR ^{28, 37}	9.13	0.629	67.5	10.6	0.365	0	0.122	0
Cr-SPH-Ti ^{28, 37}	7.74	0.838	71.3	8.99	0.364	0.073	0.059	0
Cr-SPHR-Ti ^{28, 37}	7.74	0.678	71.1	9.05	0.443	0	0.102	0
CAF-SPH-1 ^{28, 37}	8.84	0.686	65.4	4.68	3.83	3.35	2.10	0
CAF-SPHR ^{28, 37}	8.37	0.533	61.1	5.02	7.36	0	7.54	0
CAF-SPH-Ti ^{28, 37}	7.46	0.941	70.5	4.13	2.44	3.27	0.899	0
CAF-SPHR-Ti ^{28, 37}	7.13	0.604	63.3	3.59	10.5	0	6.75	0
Ga-SPH-1 ³⁰	16.6	0	66.8	0	0	0	0	16.6
Ga-SPH-2 ³⁰	13.0	1.50	71.0	0	0	0	0	14.5
Ga-SPH-3 ³⁰	8.34	4.17	75.0	0	0	0	0	12.5
Ga-SPH-4 ³⁰	0	8.31	83.4	0	0	0	0	8.31
Al-SPH-1 ³⁵	14.7	1.31	68.8	0	15.2	0	0	0
Al-SPH-2 ³⁶	14.5	0	71.0	0	14.5	0	0	0
Cr-SPH-2 ³⁶	14.5	0	71.0	14.5	0	0	0	0
Ga-SPH-5 ³⁶	14.5	0	71.0	0	0	0	0	14.5
Fe-SPH-2 ³⁶	14.5	0	71.0	0	0	14.5	0	0
AF-SPH-1 ³⁶	16.0	0	68.0	0	10.3	5.75	0	0
AG-SPH-1 ³⁶	16.0	0	68.0	0	10.3	0	0	5.75
Al-SPH-3 ³⁶	13.9	0.625	71.0	0	14.5	0	0	0
Cr-SPH-3 ³⁶	13.0	1.50	71.0	14.5	0	0	0	0
Ga-SPH-6 ³⁶	13.0	1.50	71.0	0	0	0	0	14.5
AG-SPH-2 ³⁶	12.5	1.75	71.5	0	9.13	0	0	5.13
Fe-SPH-3 ³⁶	13.0	1.50	71.0	0	0	14.5	0	0
AF-SPH-2 ³⁶	12.5	1.75	71.5	0	9.13	5.13	0	0
Al-SPH-4 ³⁶¹	15.5	0	69.0	0	15.5	0	0	0
Fe-SPH-4 ³⁶¹	15.5	0	69.0	0	0	15.5	0	0
Al-SPH-DS-1361	15.5	0	69.0	0	15.5	0	0	0
Fe-SPH-DS-1 ³⁶¹	15.5	0	69.0	0	0	15.5	0	0
Al-SPH-DS-235	14.7	1.31	68.8	0	15.2	0	0	0
Al-SPH-DFT-1 ³⁹	16.6	0	66.7	0	16.7	0	0	0
Al-SPH-DFT-2 ³⁹	12.5	2.06	70.9	0	14.6	0	0	0
Al-SPH-DFT-3 ³⁹	8.37	4.18	75.0	0	12.5	0	0	0
Al-SPH-DFT-4 ³⁹	4.13	6.25	79.2	0	10.4	0	0	0
Al-SPH-DFT-5 ³⁹	0	8.31	83.4	0	8.31	0	0	0
Ga-SPH-DFT-1 ³⁹	16.6	0	66.7	0	0	0	0	16.7
Ga-SPH-DFT-2 ³⁹	12.5	2.06	70.9	0	0	0	0	14.6
Ga-SPH-DFT-3 ³⁹	8.37	4.18	75.0	0	0	0	0	12.5
Ga-SPH-DFT-4 ³⁹	4.13	6.25	79.2	0	0	0	0	10.4
Ga-SPH-DFT-5 ³⁹	0	8.31	83.4	0	0	0	0	8.31
Fe-SPH-BASE-1	16.6	0	66.7	0	0	16.7	0	0
Fe-SPH-BASE-2	12.5	2.06	70.9	0	0	14.6	0	0
Fe-SPH-BASE-3	8.37	4.18	75.0	0	0	12.5	0	0
Fe-SPH-BASE-4	4.13	6.25	79.2	0	0	10.4	0	0
Fe-SPH-BASE-5	0	8.31	83.4	0	0	8.31	0	0
AI-SPH-C _p	14.7	1.31	68.8	0	15.2	0	0	0
Ӿ point (Fig. 7.4)	1.50	6.68	77.9	4.68	3.83	3.35	2.10	0
epoint (Fig. 7.4)	12.7	0.735	72.7	4.68	3.83	3.35	2.10	0

Table 7.1. Oxide compositions of specified waste types

^a For waste types with abbreviated elements: C = Cr, A = Al, F = Fe, G = Ga

		AHaravary	Same			$C_{\rm p}{}^{\rm a}$ co	onstants				_
Compound	T range (K)	(J/mol)	$(J/mol \cdot K)$	a	b	с	d	е	f	g h	Reference
Al ₂ O ₃ (corundum)	298 < T < 2327.01 2327 < T < 3000	-1675700	50.81999	155.018882 192.464		-38.61363015		-828.38698	4.09083646192		Bale et al. ^{b,43}
TiO ₂ (s)	298.15 < T < 2185 2185 < T < 5000	-944000	50.62	63.19571 100	11.82047	-10.34714	-0.1951847				Bale et al. ^{c,43}
$TiO_2(\ell)$	298.15 < <i>T</i> < 2185	-876000	81.74128	63.19571	11.82047	-10.34714	-0.1951847				"
Ti ₂ O ₃ (s)	298.15 < T < 470 470 < T < 2115 2115 < T < 2500	-1520884	77.25297	100 730.23381288 169.96110912	1.8808385408E+10	16.0964894072		14604.8657928 -750.21868888	-15.65521004		Bale et al. ^{b,43}
Ti ₃ O ₅ (s)	298.15 < T < 450 450 < T < 1991	-2465422	129.369	156.9 278 899892		71 360165976		-2149 47088008	-21 1960050912		"
Cr ₂ O ₃ (s)	298.15 < T < 306 $306 < T < 335$ $335 < T < 2705$ $2705 < T < 4500$	-1140600	81.1	-2205.58 -10335.4 134.438 170	5442.26 21480.4 -12.6174	624.9626 3642.033 -28.3957	8437.26	211).17000000	21.1900030912		Bale et al. ^{c,43}
FeO(s)	298.15 < <i>T</i> < 1650 1650 < <i>T</i> < 3000	-265700	57.58	57.49 68.2	-9.7619	-6.4624 0.0003	9120.26				"
Fe ₂ O ₃ (s)	$\begin{array}{l} 298.15 < T < 700 \\ 700 < T < 955 \\ 955 < T < 970 \\ 970 < T < 1050 \\ 1050 < T < 1812 \\ 1812 < T < 4000 \end{array}$	-825000	87.4	143.718 638.059 -5041690 -34422.16 80.37801 165	-36.8323 -964.0469 6908191 43508.09 55.8247	-31.4702 -447.4924 7957924 64561.86 166.8551	72252.2 561229.3 -2.662215E+09 -15398440 -12364.54				"
FeAl ₂ O ₄ (s)	298.15 < <i>T</i> < 2053	-1980873	106.274	155.3938	26.15	-31.33816					"
FeTiO ₃ (s)	298.15 < <i>T</i> < 1650	-1233142.16	108.6275	149.999500344		-33.2369399512	2	-441.62199496	3.4815103748		Bale et al. ^{b,43}
Fe ₂ TiO ₅ (s)	298.15 < T < 2000	-1738786.72	171.9624	192.58952	22.00784	-31.00344					Bale et al. ^{d,43}
FeTi ₂ O ₅ (s)	298.15 < <i>T</i> < 1728	-2152814.44	176.5694	247.154001216		-45.02760132		-1026.15001616	4.5551601296		Bale et al. ^{b,43}
Fe ₂ TiO ₄ (s)	298.15 < <i>T</i> < 2000	-1515609.69	168.87	249.630000368				-1817.39997968	-0.54530000872		"
Ga ₂ O ₃ (s)	298.15 < T < 2080 2080 < T < 4000	-1091000	84.94	114.3972 160	14.96308 -2.694611E-13	-23.7587 -3.693633E-12	-0.3472236 3.667516E-11				Bale et al. ^{c,43}
$Cs_2O(s)$	298.15 < <i>T</i> < 768 768 < <i>T</i> < 2500	-346400	146.9	66.00865 100	33.50166	0.004812183	-28.2838				"
$Cs_2O(\ell)$	298.15 < T < 768 768 < T < 2500	-326400	172.9417	66.00865 100	33.50166	0.004812183	-28.2838				"
$Cs_2Ti_2O_5(s)$	298.15 < <i>T</i> < 768 768 < <i>T</i> < 2500	-2256315	246.73	213.21851 247.20986	35.668554 2.166894	-32.817827817 -32.82264	-31.049508 -2.765708				This work

Table 7.2. Enthalpy, entropy, and heat capacity constant values of specified compounds

Compound	Trange (K)	∆H _{298.15 K}	S _{298.15 K}	$C_{\rm p}^{\rm a}$ constants					Reference
Compound	T tange (K)	(J/mol)	$(J/mol \cdot K)$	а	b	С	d	efgh	Kelefelice
$Cs_2Ti_5O_{11}(s)$	298.15 < T < 768	-5086020	396.475	434.0333	38.918895	-82.051787817	-35.19807		This work
	768 < T < 2500			468.02465	0.00541724	-8205660	-6.91E-09		
$Cs_2Ti_6O_{13}(s)$	298.15 < <i>T</i> < 768	-6020900	446.39	507.63823	40.002342	-98.463107817	-36.580924		"
	768 < T < 2500			541.62958	6.500682	-98.46792	-8.297124		
BaO(s)	298.15 < T < 900	-548104	72.0694	45.367112	17.6602456	-2.52747072	-5722.875198		Lu & Jin ³⁷³
	900 < T < 2286			51.308392	6.671388	-7.809436	-45.43824		
	2286 < T < 3000			66.944					
$BaO(\ell)$	298.15 < T < 900	-489528	97.6932	45.367112	17.6602456	-2.52747072	-5722.875198		"
	900 < T < 2286			51.308392	6.671388	-7.809436	-45.43824		
D TO ()	2286 < T < 3000		100.1660	66.944		10.17			
BaTiO ₃ (α)	298.15 < T < 3000	-1664124.46	103.1662	121.462	8.535	-19.16			
BaliO ₃ (β)	298.15 < T < 3000	-16606/4.46	105.1662	121.462	8.535	-19.16	5722 (5502(8		
$Ba \Pi_4 O_9(s)$	298.15 < T < 900	-4318418	-239.0794	298.149952	04.9421230 52.052268	-43.91603072	-5/25.0559508		
	900 < T < 2185 2185 < T < 2286			451 308392	6 671388	-49.19/990	-40.2189788		
	2185 < T < 2280 2286 < T < 3000			466.944	0.071500	-7.807450	-+5.+502+		
	3000 < T < 5000			466.944					
Ba ₂ TiO ₄ (s)	298.15 < <i>T</i> < 3000	-2198892.82	207.41	179.912	6.694	-29.12			"
Ba2Ti9O20(s)	298.15 < T < 900	-9999010	559.1888	659.495614	141.7047212	-98.17920144	-11447.5070583		"
	900 < T < 2185			671.378174	119.727006	-108.743132	-92.6331423		
	2185 < T < 2286			1002.616784	13.342776	-15.618872	-90.87648		
	2286 < T < 3000			1033.888					
	3000 < T < 5000			1033.888					
$Ba_4Ti_{13}O_{30}(s)$	298.15 < T < 900	-15207662	897.2676	1003.012678	224.3070924	-144.62270288	-22894.0381931		"
	900 < T < 2185			1026.777798	180.351662	-165.750564	-184.2903611		
	2185 < T < 2286			1505.233568	26.685552	-31.237744	-181.75296		
	2286 < T < 3000			1567.776					
\mathbf{B}_{0} Ti \mathbf{O}_{0} (a)	$3000 \le I \le 3000$	20423235	1225 366	130/.//0	306 0004626	101.06620432	3/3/0 5603270		"
$Da_6 \Pi_{17} O_{40}(S)$	$230.13 \le 1 \le 900$ $900 \le T \le 2185$	-20423233	1223.300	1340.329/42	240 976318	-191.00020432	-3+340.3093279		
	2185 < T < 2286			2007.850352	40.028328	-46.856616	-272.62944		
	2286 < T < 3000			2101.664	.0.020020		2,2.02,11		
	3000 < T < 5000			2101 664					

Table 7.2 cont'd. Enthalpy, entropy, and heat capacity constant values of specified compounds

Table 7.2 cont'd. Enthalpy, entropy, and heat capacity constant values of specified c	compounds
---	-----------

C	$T_{max} = (V)$	∆H _{298.15 K}	S _{298.15 K}	$C_{\rm p}^{\rm a}$ constants						D.C		
Compound	Trange (K)	(J/mol)	(J/mol·K)	а	b	С	d	е	f	g	h	- Reference
BaFe ₂ O ₄ (s)	298.15 < T < 6000	-1453142.3	166.2	149.786	66.5006	-22.7682						Bale et al. ^{e,43}
	6000 < T < 6001			548.72636								
$BaFe_{12}O_{19}(s)$	298.15 < T < 6000	-5578071.9	637.5529	1030.2544	-174.75556	-294.11018	72082.92					"
	6000 < T < 6001			2575.8892								
$Ba_2Fe_2O_5(s)$	298.15 < T < 6000	-2062197.5	222.7464	302.01658	-100.57268	-75.20816	48151.68					
	6000 < T < 6001			1431.8321								
$Ba_2Fe_6O_{11}(s)$	298.15 < T < 6000	-3749875	413.0252	612.71755	-135.61578	-162.08784	62697.12					"
	6000 < T < 6001			2055.6689								
$Ba_7Fe_4O_{13}(s)$	298.15 < T < 6000	-5896630.8	597.5824	817.03455	-317.03746	-191.8279	154889.46					"
	6000 < T < 6001			4490.2975								
CsAlTiO ₄ (s)	298.15 < T < 500	-2072500	190	40.437623132	142.1381254	-104.3200452	-44295.7297773	2566.4436429	7.99935874227	4317.06172	-771.917578	This work
	500 < T < 1166			42.801228326	138.3531592	-85.14951962	-44295.7297773	2566.4436429	7.99935874227	-2850.41894	-771.917578	
	1166 < T < 1200			210.408714902	-6.0495792	-67.35682022	15697.2870444		7.99935874227	-2850.41894	-771.917578	
	1200 < T < 1939			196.234896884	-6.0495792	-67.35682022			8.05881344576			
	1939 < T < 2130			184.426242784		-67.35682022			8.05881344576			
	2130 < T < 3000			229.583								
Cs ₂ AlGaTi ₂ O ₈ (s)	298.15 < T < 500	-3889000	379.729	21.692077477	322.3278203	-230.57227864	-104288.7465989	5132.8872858	16.05817218803	27175.1138217	-771.91757787	/ *
	500 < T < 1166			68.053340206	276.7063184	-170.29903924	-104288.7465989	5132.8872858	16.05817218803	-2850.4189384	-771.91757787	P.
	1166 < T < 1200			403.268313358	-12.0991584	-134.71364044	15697.28704439		16.05817218803	-2850.4189384	-771.91757787	P
	1200 < T < 1939			389.09449534	-12.0991584	-134.71364044			16.11762689152			
	1939 < T < 2130			365.47718714		-134.71364044			16.11762689152			
	2130 < <i>T</i> < 3000			455.790701572								

^a C_p (J · mol⁻¹ · K⁻¹) = $a + b \cdot 10^{-3}T + c \cdot 10^5T^{-2} + d \cdot 10^{-9}T^2 + e \cdot T^{-0.5} + f \cdot 10^8T^{-3} + g \cdot T^3 + h \cdot 10^{-3}T^{0.5}$

^b Obtained from FTOxid FactSage 7.2⁴³ database

^c Obtained from SGPS FactSage 7.2⁴³ database ^d Obtained from FactPS FactSage 7.2⁴³ database

^e Obtained from TDnucl FactSage 7.2⁴³ database

Table 7.3. Model parameters for solid solutions and oxide melt (all ${}^{\circ}G$ and L parameter units are J/mol)

Hollandite $(Ba^{+2}, Cs^{+1}, Va)_2[Ti^{+4}, Cr^{+3}, Al^{+3}, Fe^{+3}, Fe^{+2}, Ga^{+3}]_4 \{Ti^{+4}\} \langle 0^{-2} \rangle_{16}$ ${}^{0}G_{\text{Ba}_{2}\text{Ti}_{8}\text{O}_{16}^{+4}} = 2{}^{0}G_{\text{BaO}(s)} + 8{}^{0}G_{\text{TiO}_{2}(s)} + 6{}^{0}G_{\text{Ti}_{2}\text{O}_{3}(s)} - 4{}^{0}G_{\text{Ti}_{3}\text{O}_{5}(s)} - 320000$ ${}^{o}G_{\text{Cs}_{2}\text{Ti}_{8}\text{O}_{16}^{+2}} = {}^{o}G_{\text{Cs}_{2}\text{O}(s)} + 8{}^{o}G_{\text{Ti}\text{O}_{2}(s)} + 3{}^{o}G_{\text{Ti}_{2}\text{O}_{3}(s)} - 2{}^{o}G_{\text{Ti}_{3}\text{O}_{5}(s)} - 250000$ ${}^{o}G_{\mathrm{Ti}_{8}O_{16}} = 8{}^{o}G_{\mathrm{Ti}O_{2}(s)} + 170000$ ${}^{o}G_{Ba_{2}Cr_{4}Ti_{4}O_{16}} = 2{}^{o}G_{BaO(s)} + 2{}^{o}G_{Cr_{2}O_{3}(s)} + 4{}^{o}G_{TiO_{2}(s)} - 390000 - 80T$ ${}^{o}G_{Cs_{2}Cr_{4}Ti_{4}O_{16}^{-2}} = {}^{o}G_{Cs_{2}O(s)} + 2 {}^{o}G_{Cr_{2}O_{3}(s)} + 4 {}^{o}G_{TiO_{2}(s)} + 2 {}^{o}G_{Ti_{3}O_{5}(s)} - 3 {}^{o}G_{Ti_{2}O_{3}(s)} - 120000 - 607$ ${}^{o}G_{\mathrm{Cr}_{4}\mathrm{Ti}_{4}\mathrm{O}_{16}^{-4}} = 2{}^{o}G_{\mathrm{Cr}_{2}\mathrm{O}_{3}(\mathrm{s})} + 4{}^{o}G_{\mathrm{TiO}_{2}(\mathrm{s})} + 4{}^{o}G_{\mathrm{Ti}_{3}\mathrm{O}_{5}(\mathrm{s})} - 6{}^{o}G_{\mathrm{Ti}_{2}\mathrm{O}_{3}(\mathrm{s})} - 340000 + 307$ ${}^{o}G_{\text{Ba}_{2}\text{Al}_{4}\text{Ti}_{4}\text{O}_{16}} = 2{}^{o}G_{\text{BaO}(s)} + 2{}^{o}G_{\text{Al}_{2}\text{O}_{3}(s)} + 4{}^{o}G_{\text{TiO}_{2}(s)} - 250000$ ${}^{\rm o}G_{{\rm Cs_2Al_4Ti_4O_{16}^{-2}}} = {}^{\rm o}G_{{\rm Cs_2O}({\rm s})} + 2 \, {}^{\rm o}G_{{\rm Al_2O_3}({\rm s})} + 4 \, {}^{\rm o}G_{{\rm TiO_2}({\rm s})} + 2 \, {}^{\rm o}G_{{\rm Ti_3O_5}({\rm s})} - 3 \, {}^{\rm o}G_{{\rm Ti_2O_3}({\rm s})} - 250000 - 1007$ ${}^{o}G_{Al_{4}Ti_{4}O_{16}^{-4}} = 2{}^{o}G_{Al_{2}O_{3}(s)} + 4{}^{o}G_{TiO_{2}(s)} + 4{}^{o}G_{Ti_{3}O_{5}(s)} - 6{}^{o}G_{Ti_{2}O_{3}(s)} - 450000$ ${}^{o}G_{\text{Ba}_{2}\text{Fe}_{4}\text{Ti}_{4}\text{O}_{16}} = 2{}^{o}G_{\text{BaO}(s)} + 2{}^{o}G_{\text{Fe}_{2}\text{O}_{3}(s)} + 4{}^{o}G_{\text{TiO}_{2}(s)} - 520000 - 100T$ ${}^{o}G_{\text{Cs}_{2}\text{Fe}_{4}\text{Ti}_{4}\text{O}_{16}^{-2}} = {}^{o}G_{\text{Cs}_{2}\text{O}(s)} + 2{}^{o}G_{\text{Fe}_{2}\text{O}_{3}(s)} + 4{}^{o}G_{\text{Ti}\text{O}_{2}(s)} + 2{}^{o}G_{\text{Ti}_{3}\text{O}_{5}(s)} - 3{}^{o}G_{\text{Ti}_{2}\text{O}_{3}(s)} - 290000$ ${}^{o}G_{\mathrm{Fe_{4}Ti_{4}O_{16}^{-4}}} = 2{}^{o}G_{\mathrm{Fe_{2}O_{3}}(s)} + 4{}^{o}G_{\mathrm{TiO_{2}}(s)} + 4{}^{o}G_{\mathrm{Ti_{3}O_{5}}(s)} - 6{}^{o}G_{\mathrm{Ti_{2}O_{3}}(s)} - 550000 + 30T$ ${}^{o}G_{\text{Ba}_{2}\text{Fe}_{4}\text{Ti}_{4}\text{O}_{16}^{-4}} = 2 \, {}^{o}G_{\text{BaO}(s)} + 4 \, {}^{o}G_{\text{FeO}(s)} + 4 \, {}^{o}G_{\text{Ti}_{02}(s)} + 4 \, {}^{o}G_{\text{Ti}_{3}\text{O}_{5}(s)} - 6 \, {}^{o}G_{\text{Ti}_{2}\text{O}_{3}(s)} - 620000 - 1007$ ${}^{o}G_{Cs_{2}Fe_{4}Ti_{4}O_{16}^{-6}} = {}^{o}G_{Cs_{2}O(s)} + 4 {}^{o}G_{FeO(s)} + 4 {}^{o}G_{TiO_{2}(s)} + 6 {}^{o}G_{Ti_{3}O_{5}(s)} - 9 {}^{o}G_{Ti_{2}O_{3}(s)} - 300000 + 100T$ ${}^{o}G_{\mathrm{Fe_{4}Ti_{4}O_{16}^{-8}}} = 4{}^{o}G_{\mathrm{FeO}(s)} + 4{}^{o}G_{\mathrm{TiO}_{2}(s)} + 8{}^{o}G_{\mathrm{Ti}_{3}O_{5}(s)} - 12{}^{o}G_{\mathrm{Ti}_{2}O_{3}(s)} - 550000$ ${}^{o}G_{\text{Ba}_{2}\text{Ga}_{4}\text{Ti}_{4}\text{O}_{16}} = 2{}^{o}G_{\text{BaO}(s)} + 2{}^{o}G_{\text{Ga}_{2}\text{O}_{3}(s)} + 4{}^{o}G_{\text{TiO}_{2}(s)} - 290000$ ${}^{o}G_{Cs_{2}Ga_{4}Ti_{4}O_{16}^{-2}} = {}^{o}G_{Cs_{2}O(s)} + 2{}^{o}G_{Ga_{2}O_{3}(s)} + 4{}^{o}G_{TiO_{2}(s)} + 2{}^{o}G_{Ti_{3}O_{5}(s)} - 3{}^{o}G_{Ti_{2}O_{3}(s)} - 250000$ ${}^{o}G_{\text{Ga}_{4}\text{Ti}_{4}\text{O}_{16}^{-4}} = 2{}^{o}G_{\text{Ga}_{2}\text{O}_{3}(\text{s})} + 4{}^{o}G_{\text{TiO}_{2}(\text{s})} + 4{}^{o}G_{\text{Ti}_{3}\text{O}_{5}(\text{s})} - 6{}^{o}G_{\text{Ti}_{2}\text{O}_{3}(\text{s})} - 550000$ ${}^{0}L_{\text{Cs}^{+1},\text{Va:Cr}^{+3}:\text{Ti}^{+4}:\text{O}_{2}^{-2}} = -155000$ ${}^{0}L_{\text{Cs}^{+1},\text{Va:Al}^{+3}:\text{Ti}^{+4}:\text{O}_{2}^{-2}} = -350000$ ${}^{0}L_{\text{Cs}^{+1},\text{Va:Fe}^{+3}:\text{Ti}^{+4}:\text{O}_{2}^{-2}} = -100000$ ${}^{0}L_{\text{Cs}^{+1}:\text{Cr}^{+3},\text{Fe}^{+3}:\text{Ti}^{+4}:\text{O}_{2}^{-2}} = -150000$ ${}^{0}L_{Cs^{+1}:Al^{+3}:Fe^{+3}:Ti^{+4}:O_{2}^{-2}} = 70000$ ${}^{0}L_{\text{Ba}^{+2}:\text{Cr}^{+3},\text{Fe}^{+2}:\text{Ti}^{+4}:\text{O}_{2}^{-2}} = -250000$ BaTiO₃(α) (Ba⁺²,Va)₁[Ti⁺⁴]₁{O⁻²,Va}₃ (obtained from Lu & Jin³⁷³) ${}^{o}G_{\text{BaTiO}_{3}} = {}^{o}G_{\text{BaTiO}_{3}}(\alpha)$ ${}^{o}G_{\text{BaTi}^{+6}} = {}^{o}G_{\text{BaTiO}_{3}(\alpha)} + 3{}^{o}G_{\text{TiO}_{2}(s)} + 259032 + 47.6278T$ ${}^{0}G_{\mathrm{TiO}_{3}^{-2}} = 0$ ${}^{o}G_{\mathrm{Ti}^{+4}} = 3{}^{o}G_{\mathrm{TiO}_{2}(\mathrm{s})} + 259032 + 47.6278T$ BaTiO₃(β) (Ba⁺²,Va)₁[Ti⁺⁴]₁{O⁻²,Va}₃ (obtained from Lu & Jin³⁷³) ${}^{\mathrm{o}}G_{\mathrm{BaTiO}_3} = {}^{\mathrm{o}}G_{\mathrm{BaTiO}_3(\beta)}$ ${}^{o}G_{\text{BaTi}^{+6}} = {}^{o}G_{\text{BaTiO}_{3}(\beta)} + 3{}^{o}G_{\text{TiO}_{2}(s)} + 259032 + 47.6278T$ ${}^{\circ}G_{\mathrm{TiO}_{3}^{-2}} = 0$ ${}^{\mathrm{o}}G_{\mathrm{Ti}^{+4}} = 3{}^{\mathrm{o}}G_{\mathrm{TiO}_{2}(\mathrm{s})} + 434652 - 86.2622T$ Oxide liquid $(Cs^{+1}, Ti^{+4})_P(O^{-2})_O$ ${}^{o}G_{Cs^{+1}:O^{-2}} = {}^{o}G_{Cs_{2}O(\ell)}$ ${}^{o}G_{\mathrm{Ti}^{+4}:0^{-2}} = 2{}^{o}G_{\mathrm{Ti}0_{2}(\ell)}$ ${}^{0}L_{\text{Cs}^{+1},\text{Ti}^{+4}:\text{O}_{2}^{-2}} = -30483.9 - 51.22T$

Waste type	T(K)Targeted composition	Measured composition	Calculated composition ^a
Fe-SPH-137	1473 Ba _{1.0} Cs _{0.3} Fe _{2.3} Ti _{5.7} O ₁₆	Ba1.0Cs0.16Fe2.4Ti5.8O15.9	$Ba_{1.04}Cs_{0.047}Fe_{1.74}Al_{0.357}Ti_{5.90}O_{16}$
Fe-SPHR ³⁷	1473 "	$Ba_{1.0}Cs_{0.14}Fe_{2.4}Ti_{5.7}O_{15.0}$	$Ba_{1.14}Cs_{0.105}Fe_{0.80}Al_{0.781}Ti_{6.42}O_{16}$
Fe-SPH-Ti37	1473 "	$Ba_{1.0}Cs_{0.24}Fe_{2.4}Ti_{5.6}O_{15.8}$	$Ba_{1.08}Cs_{0.027}Fe_{1.97}Al_{0.210}Ti_{5.83}O_{16}$
Cr-SPH-1 ³⁷	$1473 \ Ba_{1.0} Cs_{0.3} Cr_{2.3} Ti_{5.7} O_{16}$	$Ba_{1.0}Cs_{0.14}Cr_{2.3}Ti_{5.8}O_{16.2}$	$Ba_{1.04}Cs_{0.153}Cr_{2.15}Al_{0.069}Fe_{0.013}Ti_{5.77}O_{16}$
Cr-SPHR ³⁷	1473 "	$Ba_{1.0}Cs_{0.19}Cr_{2.3}Ti_{5.8}O_{15.0}$	$Ba_{1.05}Cs_{0.145}Cr_{2.14}Al_{0.084}Fe_{0.014}Ti_{5.77}O_{16}$
Cr-SPH-Ti ³⁷	1473 "	$Ba_{1.0}Cs_{0.15}Cr_{2.4}Ti_{5.6}O_{16.1}$	$Ba_{0.981}Cs_{0.213}Cr_{2.05}Al_{0.092}Fe_{0.026}Ti_{5.83}O_{16}$
Cr-SPHR-Ti37	1473 "	$Ba_{1.0}Cs_{0.19}Cr_{2.4}Ti_{5.7}O_{14.9}$	$Ba_{1.01}Cs_{0.178}Cr_{2.06}Al_{0.116}Fe_{0.013}Ti_{5.81}O_{16}$
CAF-SPH-137	$1473 \ Ba_{1.0} Cs_{0.3} Cr_{1.0} Al_{0.3} Fe_{1.0} Ti_{5.7} O_1$	$_{6}Ba_{1.0}Cs_{0.16}Cr_{1.0}Al_{0.3}Fe_{1.0}Ti_{5.8}O_{16.1}$	$Ba_{0.968}Cs_{0.150}Cr_{0.900}Al_{0.397}Fe_{0.761}Ti_{5.94}O_{16}$
CAF-SPHR ³⁷	1473 "	$Ba_{1.0}Cs_{0.15}Cr_{1.0}Al_{0.4}Fe_{1.0}Ti_{5.7}O_{15.6}$	$Ba_{1.06}Cs_{0.135}Cr_{1.27}Al_{0.471}Fe_{0.258}Ti_{6.00}O_{16}$
CAF-SPH-Ti ³⁷	1473 "	$Ba_{1.0}Cs_{0.16}Cr_{1.1}Al_{0.4}Fe_{1.0}Ti_{5.7}O_{16.1}$	$Ba_{0.893}Cs_{0.226}Cr_{0.775}Al_{0.411}Fe_{0.805}Ti_{6.01}O_{16}$
CAF-SPHR-Ti3	71473 "	$Ba_{1.0}Cs_{0.17}Cr_{0.9}Al_{0.6}Fe_{1.0}Ti_{5.7}O_{15.2}$	$Ba_{0.901}Cs_{0.153}Cr_{0.907}Al_{0.93}Fe_{0.059}Ti_{6.10}O_{16}$
Ga-SPH-1 ³⁰	$1523 \ Ba_{1.33}Ga_{2.66}Ti_{5.34}O_{16}$	$\begin{array}{l} Ba_{1.39}Ga_{2.6}Ti_{5.4}O_{16} \\ Ba_{1.3}Ga_{2.7}Ti_{5.3}O_{16.0} \end{array}$	$Ba_{1.33}Ga_{2.66}Ti_{5.34}O_{16}$
Ga-SPH-2 ³⁰	$1523 \ Ba_{1.04} Cs_{0.24} Ga_{2.32} Ti_{5.68} O_{16}$	$\begin{array}{l} Ba_{1.09}Cs_{0.229}Ga_{2.6}Ti_{5.68}O_{16}\\ Ba_{1.1}Cs_{0.2}Ga_{2.4}Ti_{5.7}O_{16.0} \end{array}$	$Ba_{1.04}Cs_{0.240}Ga_{2.32}Ti_{5.68}O_{16}$
Ga-SPH-3 ³⁰	$1523 \ Ba_{0.667} Cs_{0.667} Ga_2 Ti_6 O_{16}$	$\begin{array}{l} Ba_{0.77}Cs_{0.529}Ga_{2.06}Ti_6O_{16}\\ Ba_{0.7}Cs_{0.5}Ga_{2.1}Ti_{6.0}O_{16.1} \end{array}$	$Ba_{0.667}Cs_{0.667}Ga_{2.00}Ti_{6.00}O_{16}$
Ga-SPH-4 ³⁰	$1523Cs_{1.33}Ga_{1.33}Ti_{6.67}O_{16}$	$\begin{array}{l} Cs_{1.22}Ga_{1.44}Ti_{6.67}O_{16} \\ Cs_{1.2}Ga_{1.4}Ti_{6.6}O_{16.0} \end{array}$	$Cs_{1.33}Ga_{1.33}Ti_{6.67}O_{16}\\$
Al-SPH-1 ³⁵	$1473 \ Ba_{1.18} Cs_{0.21} Al_{2.44} Ti_{5.53} O_{16}$	$Ba_{1.18}Cs_{0.21}Al_{2.44}Ti_{5.53}O_{16}$	$Ba_{1.13}Cs_{0.213}Al_{2.47}Ti_{5.53}O_{16}$
Al-SPH-2 ³⁶	$1473 \ Ba_{1.16} Al_{2.32} Ti_{5.68} O_{16}$	$Ba_{1.18}Al_{2.32}Ti_{5.67}O_{16}$	$Ba_{1.16}Al_{2.32}Ti_{5.68}O_{16}$
Cr-SPH-2 ³⁶	$1473 Ba_{1.16} Cr_{2.32} Ti_{5.68} O_{16}$	$Ba_{1.16}Cr_{2.29}Ti_{5.70}O_{16}$	$Ba_{1.21}Cr_{2.42}Ti_{5.58}O_{16}$
Ga-SPH-5 ³⁶	$1473Ba_{1.16}Ga_{2.32}Ti_{5.68}O_{16}\\$	$Ba_{1.18}Ga_{2.30}Ti_{5.68}O_{16}$	Ba _{1.16} Ga _{2.32} Ti _{5.68} O ₁₆
Fe-SPH-2 ³⁶	1473 Ba _{1.16} Fe _{2.32} Ti _{5.68} O ₁₆	Ba _{1.13} Fe _{2.32} Ti _{5.70} O ₁₆	$Ba_{1.16}Fe_{2.32}Ti_{5.68}O_{16}$
AF-SPH-1 ³⁶	$1473 Ba_{1.28} Al_{1.64} Fe_{0.92} Ti_{5.44} O_{16}$	Ba1.29Al1.71Fe0.93Ti5.38O16	$Ba_{1.28}Al_{1.64}Fe_{0.920}Ti_{5.44}O_{16}$
AG-SPH-1 ³⁶	$1473 \ Ba_{1.28} Al_{1.64} Ga_{0.92} Ti_{5.44} O_{16}$	$Ba_{1.29}Al_{1.65}Ga_{0.85}Ti_{5.48}O_{16}$	$Ba_{1.28}Al_{1.64}Ga_{0.920}Ti_{5.44}O_{16}$
Al-SPH-3 ³⁶	$1473 \ Ba_{1.11} Cs_{0.10} Al_{2.32} Ti_{5.68} O_{16}$	$\begin{array}{l} Ba_{1.17}Cs_{0.05}Al_{2.30}Ti_{5.67}O_{16}\\ Ba_{1.22}Cs_{0.01}Al_{2.49}Ti_{5.52}O_{16} \end{array}$	$Ba_{1.11}Cs_{0.10}Al_{2.32}Ti_{5.68}O_{16}$
Cr-SPH-3 ³⁶	$1473 \ Ba_{1.04} Cs_{0.24} Cr_{2.32} Ti_{5.68} O_{16}$	$\begin{array}{c} \text{Ba}_{1.08}\text{C}\text{s}_{0.11}\text{C}\text{r}_{2.19} \text{5.52} \text{16} \\ \text{Ba}_{1.08}\text{C}\text{s}_{0.11}\text{C}\text{r}_{2.10}\text{T}\text{i}_{5.86}\text{O}_{16} \\ \text{Ba}_{1.11}\text{C}\text{s}_{0.06}\text{C}\text{r}_{2.09}\text{T}\text{i}_{5.86}\text{O}_{16} \end{array}$	$Ba_{1.04}Cs_{0.240}Cr_{2.32}Ti_{5.68}O_{16}$
Ga-SPH-6 ³⁶	$1473Ba_{1.04}Cs_{0.24}Ga_{2.32}Ti_{5.68}O_{16}\\$	$Ba_{1.15}Cs_{0.15}Ga_{2.45}Ti_{5.55}O_{16}$	$Ba_{1.04}Cs_{0.240}Ga_{2.32}Ti_{5.68}O_{16}$
AG-SPH-2 ³⁶	$1473 Ba_{1.00}Cs_{0.28}Al_{1.46}Ga_{0.82}Ti_{5.72}O_{1}$	6Ba1.05Cs0.24Al1.41Ga0.76Ti5.78O16	Ba1.03Cs0.165Al1.44Ga0.784Ti5.77O16
Fe-SPH-3 ³⁶	$1473Ba_{1.04}Cs_{0.24}Fe_{2.32}Ti_{5.68}O_{16}$	$Ba_{1.06}Cs_{0.26}Fe_{2.28}Ti_{5.70}O_{16}$	$Ba_{1.04}Cs_{0.240}Fe_{2.32}Ti_{5.68}O_{16}$
		Ba _{1.10} Cs _{0.24} Fe _{2.35} Ti _{5.65} O ₁₆ Ba _{0.97} Cs _{0.21} Fe _{2.23} Ti _{5.79} O ₁₆	
AF-SPH-2 ³⁶	$1473 \ Ba_{1.00} Cs_{0.28} Al_{1.46} Fe_{0.82} Ti_{5.72} O_{10}$	$Ba_{1.05}Cs_{0.25}Al_{1.43}Fe_{0.98}Ti_{5.74}O_{16}$ $Ba_{1.08}Cs_{0.21}Al_{1.45}Fe_{0.84}Ti_{5.69}O_{16}$ $Ba_{1.00}Cs_{0.28}Al_{1.44}Fe_{0.79}Ti_{5.76}O_{16}$	$Ba_{1.03}Cs_{0.153}Al_{1.37}Fe_{0.848}Ti_{5.78}O_{16}$
Al-SPH-4 ³⁶¹	$1523 Ba_{1.24} Al_{2.48} Ti_{5.52} O_{16}$	$\begin{array}{l} Ba_{1,3\pm0.07}Al_{2,4\pm0.1}Ti_{5,6\pm0.3}O_{16,0\pm0.3}\\ Ba_{1,259\pm0.004}Al_{2,24\pm0.04}Ti_{5,69\pm0.01}O_{16,01\pm0.0} \end{array}$	$\begin{array}{c} Ba_{1.24}Al_{2.48}Ti_{5.52}O_{16}\\ {}_{4}\end{array}$
Fe-SPH-4 ³⁶¹	$1523 \ Ba_{1.24} Fe_{2.48} Ti_{5.52} O_{16}$	$\begin{array}{l} Ba_{1.27\pm0.06}Fe_{2.4\pm0.1}Ti_{5.6\pm0.3}O_{16.0\pm0.3}\\ Ba_{1.236\pm0.003}Fe_{2.42\pm0.01}Ti_{5.57\pm0.02}O_{16.00\pm0.0} \end{array}$	Ba _{1.24} Fe _{2.48} Ti _{5.52} O ₁₆

Table 7.4. Targeted, measured, and calculated hollandite phase compositions for specified waste types

^a Compositions computed at 1 atm

Weste True al				Phase mass	fraction ^b (%	6)			Even an importantly, also any of apparent damy mission
waste Type"	TiO ₂ (s) FeAl ₂ O ₄ (s	s) CsAlTiO4(s	s) Cs2AlGaTi2O8(s) FeTi ₂ O ₅ (s)) BaTiO3(β) Al ₂ O ₃ (corundum) Cr ₂ O ₃ (s)
Fe-SPH-137	13.5	10.1	2.66	0	0	0	0.559	0	Fe ₂ Ti ₃ O ₉ , Fe ₃ Ti ₃ O ₁₀ , CsAlTiO ₄
Fe-SPHR ³⁷	0	14.8	1.16	0	18.4	0	0	0	BaFe12O19, Fe3Ti3O10, CsAlTiO4, FeAl2O4
Fe-SPH-Ti37	22.2	5.90	3.96	0	0	0	11.8	0	Fe ₃ Ti ₃ O ₁₀ , CsAlTiO ₄
Cr-SPH-137	16.6	0	0	0	0	0	0	2.00	TiO ₂ (s)
Cr-SPHR ³⁷	16.2	0	0	0	0	0	0	2.42	"
Cr-SPH-Ti ³⁷	23.7	0	0	0	0	0	0	1.62	"
Cr-SPHR-Ti37	25.2	0	0	0	0	0	0	2.11	"
CAF-SPH-1 ³⁷	10.4	3.74	0	0	0	0	0.202	1.02	Fe ₂ TiO ₄
CAF-SPHR ³⁷	13.2	11.4	0	0	0	0	0	0	Fe ₂ TiO ₄ , FeAl ₂ O ₄ , BaFe ₁₂ O ₁₉ , CsAlTiO ₄
CAF-SPH-Ti ³⁷	19.1	1.48	0	0	0	0	0	1.60	TiO ₂ , CsAlTiO ₄
CAF-SPHR-Ti ³	7 14.2	13.0	0	0	0	0	0.674	0	Fe ₂ TiO ₄ , CsAlTiO ₄
Ga-SPH-130	0	0	0	0	0	0	0	0	None detected
Ga-SPH-2 ³⁰	0	0	0	0	0	0	0	0	"
Ga-SPH-3 ³⁰	0	0	0	0	0	0.014	0	0	"
Ga-SPH-4 ³⁰	0	0	0	0	0	0	0	0	Ti-rich phase
Al-SPH-135	0	0	0	0	0	1.96	0	0	None detected
Al-SPH-2 ³⁶	0	0	0	0	0	0	0	0	"
Cr-SPH-2 ³⁶	3.27	0	0	0	0	0	0	0	"
Ga-SPH-5 ³⁶	0	0	0	0	0	0	0	0	"
Fe-SPH-2 ³⁶	0	0	0	0	0	0	0	0	"
AF-SPH-1 ³⁶	0	0	0	0	0	0	0	0	"
AG-SPH-1 ³⁶	0	0	0	0	0	0	0	0	"
Al-SPH-3 ³⁶	0	0	0	0	0	0	0	0	TiO ₂ , Ba ₂ Ti ₉ O ₂₀
Cr-SPH-3 ³⁶	0	0	0	0	0	0	0	0	None detected
Ga-SPH-6 ³⁶	0	0	0	0	0	0	0	0	CsGaSi0.4Ti0.6O4
AG-SPH-2 ³⁶	0	0	0	4.37	0	0	0	0	CsAl _{0.5} Ga _{0.5} TiO ₄
Fe-SPH-3 ³⁶	0	0	0	0	0	0	0	0	Fe ₂ TiO ₅ , BaTi ₄ O ₉
AF-SPH-2 ³⁶	0	0	4.56	0	0	0	0	0	Phases containing Y, Zr, Cs, Si, Al, O
Al-SPH-4 ³⁶¹	0	0	0	0	0	0	0	0	None detected
Fe-SPH-4 ³⁶¹	0	0	0	0	0	0	0	0	None detected

Table 7.5. Calculated secondary phase amounts as well as experimentally observed secondary phases that were stable for each waste type

^a Waste types correspond with compositions listed in Table S1
 ^b Remaining mass fraction for each waste type consists of the hollandite phase such that the total mass fraction sums to 100%.

	Measured/determined usin	ig DFT		Calculated from database	
Waste type	Phase	$\frac{\Delta H_{298.15 \text{ K,ox}}^{\text{a}}}{\text{(J/mol)}}$	$\frac{\Delta H_{298.15 \text{ K,el}}^{\text{b}}}{(\text{J/mol})}$	Phase	$\frac{\Delta H_{298.15 \text{ K,el}}}{\text{(J/mol)}}$
Al-SPH-DS-1 ^{361c}	$Ba_{1.24}Al_{2.48}Ti_{5.52}O_{16}$	$-207800 \pm 5.7 \cdot 10^3$	-8176197	Ba _{1.23} Al _{2.46} Ti _{5.54} O ₁₆	-8217750
Fe-SPH-DS-1 ³⁶¹	Ba _{1.24} Fe _{2.48} Ti _{5.52} O ₁₆	$-223500 \pm 9.1 \cdot 10^3$	-7298310	Ba _{1.24} Fe _{2.48} Ti _{5.52} O ₁₆	-7293915
Al-SPH-DS-2 ³⁵	$Ba_{1.18}Cs_{0.21}Al_{2.44}Ti_{5.53}O_{16}$	$-212000 \pm 12.6 \cdot 10^3$	-8159809	$Ba_{1.07}Cs_{0.220}Al_{2.37}Ti_{5.63}O_{16}$	-8182266
Al-SPH-DFT-1 ^{39d}	Ba1.33Al2.67Ti5.33O16	-228796	-8226354	Ba _{1.23} Al _{2.46} Ti _{5.54} O ₁₆	-8217750
Al-SPH-DFT-2 ³⁹	$Ba_1Cs_{0.33}Al_{2.33}Ti_{5.67}O_{16}$	-235183	-8145114	$Ba_{0.995}Cs_{0.331}Al_{2.32}Ti_{5.68}O_{16}$	-8164211
Al-SPH-DFT-3 ³⁹	$Ba_{0.670}Cs_{0.67}Al_2Ti_6O_{16}$	-236754	-8059728	$Ba_{0.665}Cs_{0.670}Al_{2.0}Ti_{6.0}O_{16}$	-8065136
Al-SPH-DFT-4 ³⁹	$Ba_{0.33}Cs_1Al_{1.67}Ti_{6.33}O_{16}$	-242513	-7971317	$Ba_{0.330}Cs_{1.0}Al_{1.66}Ti_{6.34}O_{16}$	-7956986
Al-SPH-DFT-5 ³⁹	$Cs_{1.33}Al_{1.33}Ti_{6.67}O_{16}$	-255602	-7896779	$Cs_{1.34}Al_{1.34}Ti_{6.66}O_{16}$	-7848655
Ga-SPH-DFT-1 ³⁹	Ba1.33Ga2.67Ti5.33O16	-208377	-7425360	Ba _{1.33} Ga _{2.66} Ti _{5.34} O ₁₆	-7523784
Ga-SPH-DFT-2 ³⁹	Ba1Cs0.33Ga2.33Ti5.67O16	-216126	-7444881	$Ba_{1.0}Cs_{0.330}Ga_{2.33}Ti_{5.67}O_{16}$	-7504888
Ga-SPH-DFT-3 ³⁹	$Ba_{0.67}Cs_{0.67}Ga_2Ti_6O_{16}$	-227225	-7465499	$Ba_{0.665}Cs_{0.670}Ga_{2.0}Ti_{6.0}O_{16}$	-7483853
Ga-SPH-DFT-4 ³⁹	$Ba_{0.33}Cs_1Ga_{1.67}Ti_{6.33}O_{16}$	-238743	-7479323	$Ba_{0.330}Cs_{1.0}Ga_{1.66}Ti_{6.34}O_{16}$	-7463380
Ga-SPH-DFT-5 ³⁹	Cs1.33Ga1.33Ti6.67O16	-247330	-7499681	$Cs_{1.34}Ga_{1.34}Ti_{6.66}O_{16}$	-7441511
Cr-SPH-BASE-1 ^e	-	-	-	Ba _{1.33} Cr _{2.66} Ti _{5.34} O ₁₆	-7587448
Cr-SPH-BASE-2	-	-	-	$Ba_{1.0}Cs_{0.330}Cr_{2.33}Ti_{5.67}O_{16}$	-7543319
Cr-SPH-BASE-3	-	-	-	Ba _{0.667} Cs _{0.672} Cr _{2.01} Ti _{5.99} O ₁₆	-7501921
Cr-SPH-BASE-4	-	-	-	$Ba_{0.330}Cs_{1.0}Cr_{1.66}Ti_{6.34}O_{16}$	-7466041
Cr-SPH-BASE-5	-	-	-	$Cs_{1.38}Cr_{1.38}Ti_{6.62}O_{16}$	-7430217
Fe-SPH-BASE-1 ^e	-	-	-	Ba1.33Fe2.66Ti5.34O16	-7271530
Fe-SPH-BASE-2	-	-	-	$Ba_{1.0}Cs_{0.330}Fe_{2.33}Ti_{5.67}O_{16}$	-7269052
Fe-SPH-BASE-3	-	-	-	Ba _{0.667} Cs _{0.672} Fe _{2.01} Ti _{5.99} O ₁₆	-7267548
Fe-SPH-BASE-4	-	-	-	Ba _{0.330} Cs _{1.0} Fe _{1.66} Ti _{6.34} O ₁₆	-7273386
Fe-SPH-BASE-5	-	-	-	Cs _{1,35} Fe _{1,35} Ti _{6,65} O ₁₆	-7277723

Table 7.6. Hollandite phase standard enthalpies of formation from constituent elements

^a Formation of hollandite from constituent oxides ^b Formation of hollandite from constituent elements

^c Determined from drop solution (DS) calorimetry

^d Determined from DFT

^e Determined from thermodynamic database

Region	Stable phases ^a	Region	Stable phases
1	H + AF + A + BT2 + C2 + BT1	22	H + AF + A + C1 + FT4 + T
2	H + AF + A + C2 + BT1	23	H + AF + C1 + FT3 + FT4 + T
3	H + A + C2 + BT1	24	H + C1 + FT3 + FT4 + T
4	H + C2 + BT1	25	H + FT1 + C1
5	H + BT5 + C2 + BT1	26	H + FT1 + C1 + C2
6	H + BT5 + C2	27	H + FT1 + C2
7	H + BT4 + BT5 + C2	28	H + FT2 + C1 + C2
8	H + BT4 + C2	29	H + FT2 + C2
9	H + BT3 + BT4 + C2	30	H + C2 + F1
10	H + AF + C2	31	H + C2 + L + F1
11	H + AF + FT3	32	H + C2 + L
12	H + BT3 + C2 + T	33	H + C1 + C2 + F2 + L + F1
13	H + AF + A + T	34	H + C1 + C2 + L + F1
14	H + AF + C2 + FT3	35	H + C1 + C2 + L
15	H + C2 + FT3	36	H + C2 + BT1 + L
16	H + AF + C1 + FT3	37	H + C2 + BT1 + L + F1
17	H + AF + FT3 + T	38	H + BT2 + C2 + BT1 + L + F1
18	H + C1 + FT3	39	H + BT2 + C2 + L + F1
19	H + C1 + FT3 + T	40	H + BT2 + C1 + C2 + L + F1
20	H + AF + C1 + FT3 + T	41	H + BF + BT2 + C1 + C2 + L + F1
21	H + AF + A + C1 + T		

Table 7.7. Stable phases displayed in the isothermal BaO-Cs₂O-TiO₂ diagram with Cr, Al, and Fe additives (Fig. 7.4)

^a Stable phases: H = Hollandite, A = Al₂O₃(corundum), AF = FeAl₂O₄, BF = Ba₂Fe₂O₅, BT1 = BaTiO₃(α), BT2 = Ba₂TiO₄, BT3 = Ba₂Ti₉O₂₀, BT4 = Ba₄Ti₁₃O₃₀, BT5 = Ba₆Ti₁₇O₄₀, C1 = Cr₂O₃, C2 = CsAlTiO₄, F1 = FeO, F2 = Fe₂O₃, FT1 = FeTiO₃, FT2 = Fe₂TiO₄, FT3 = FeTi₂O₅, FT4 = Fe₂TiO₅, T = TiO₂, L = Liquid

Table 7.8. Stable phases and amounts of \times and \bigcirc symbols located in Fig. 7.4

Symbol	Stable phase	Amount (g)
Ж	Hollandite (Ba0.892Cs0.230Cr0.786Al0.573Fe0.608Ti6.03O16)	93.8
	FeTi ₂ O ₅	2.62
	FeAl ₂ O ₄	0.723
•	Hollandite (Ba _{0.143} Cs _{1.25} Cr _{0.295} Al _{0.659} Fe _{0.577} Ti _{6.47} O ₁₆)	94.7
	Cr ₂ O ₃	4.52
	FeTi ₂ O ₅	3.17

Fig. 7.1. Computed Cs₂O-TiO₂ pseudo-binary phase diagram with experimental measurements shown as points. Data: $\bigcirc^{375} \square^{373} \triangle^{367}$

Fig. 7.2. Computed hollandite standard enthalpies of formation from constituent elements compared with experimental and DFT derived values. Legend corresponds to Table 7.3 in which labels with '_calc' indicate values computed from the thermodynamic database.

Fig. 7.3. Computed heat capacity of $Ba_{1.07}Cs_{0.221}Al_{2.36}Ti_{5.64}O_{16}$ hollandite at 1.2 mPa with experimental measurements for the $Ba_{1.18}Cs_{0.21}Al_{2.44}Ti_{5.53}O_{16}$ hollandite shown as points. Data: \bigcirc^{377}

www.manaraa.com

Fig. 7.4. Computed 1473 K isothermal diagram of pseudo-ternary BaO-Cs₂O-TiO₂ system with oxides of Cr, Al, and Fe additives in CAF-SPH-1 quantities. Numbered phase regions are defined in Table 7.7.

Fig. 7.5. Expanded section of 1473 K of pseudo-ternary BaO-Cs₂O-TiO₂ isothermal diagram of Fig. 7.4

7.11. Copyright permission

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

Apr 13, 2019

This Agreement between University of South Carolina -- Stephen Utlak ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number	4567140391627
License date	Apr 13, 2019
Licensed Content Publisher	John Wiley and Sons
Licensed Content Publication	Journal of the American Ceramic Society
Licensed Content Title	Thermodynamic assessment of the hollandite high-level radioactive waste form
Licensed Content Date	Apr 12, 2019
Licensed Content Pages	14
Type of use	Dissertation/Thesis
Requestor type	Author of this Wiley article
Format	Print and electronic
Portion	Full article
Will you be translating?	No
Title of your thesis / dissertation	Modeling complex oxides: Thermochemical behavior of nepheline- forming Na-Al-Si-B-K-Li-Ca-Mg-Fe-O and hollandite-forming Ba-Cs- Ti-Cr-Al-Fe-Ga-O systems
Expected completion date	Apr 2019
Expected size (number of pages)	275
Requestor Location	University of South Carolina

	Attn: University of South Carolina
Publisher Tax ID	EU826007151
Total	0.00 USD
Terms and Conditions	

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a"Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a particular work (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your RightsLink account (these are available at any time at http://myaccount.copyright.com).

Terms and Conditions

- The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.
- You are hereby granted a personal, non-exclusive, non-sub licensable (on a standalone basis), non-transferable, worldwide, limited license to reproduce the Wiley <u>Materials for the purpose specified in the licensing process</u>. This license, **and any CONTENT (PDF or image file) purchased as part of your order**, is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted by this license must be completed within two years of the date of the grant of this license (although copies prepared before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is expressly excluded from this permission.
- With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may be made based on the Wiley Materials without the prior permission of the respective copyright owner. For STM Signatory Publishers clearing permission under the terms of the <u>STM Permissions Guidelines</u> only, the terms of the license are extended to include subsequent editions and for editions in other languages, provided such editions are for the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts, You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you hereunder to any other person.
- The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto
- NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY

QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.

- WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.
- You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.
- IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.
- Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be affected or impaired thereby.
- The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.
- This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written consent.
- Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.
- These terms and conditions together with CCC's Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives,

and authorized assigns.

- In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall prevail.
- WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
- This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process.
- This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. Although most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License

The <u>Creative Commons Attribution License (CC-BY)</u> allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC-BY license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The <u>Creative Commons Attribution Non-Commercial (CC-BY-NC)License</u> permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The <u>Creative Commons Attribution Non-Commercial-NoDerivs License</u> (CC-BY-NC-ND) permits use, distribution and reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no modifications or adaptations are made. (see below)

Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee. Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? <u>customercare@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

www.manaraa.com

References

1. Li H., Hrma P., Vienna J. D., et al., Effects of Al₂O₃, B₂O₃, Na₂O, and SiO₂ on nepheline formation in borosilicate glasses: chemical and physical correlations. *J. Non-Cryst. Solids.* 2003;331:202-216.

2. Hrma P., Crystallization during processing of nuclear waste glass. J. Non-Cryst. Solids. 2010;356:3019-3025.

3. Pierce E. M., Reed L. R., Shaw W. J., et al., Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline (NaAlSiO₄)-malinkoite (NaBSiO₄) join. *Geochim. Cosmochim. Ac.* 2010;74:2634-2654.

4. Fox K. M., Edwards T. B., Peeler D. K., Control of nepheline crystallization in nuclear waste glass. *Int. J. Appl. Ceram. Tec.* 2008;5:666-673.

5. McCloy J., Washton N., Gassman P., et al., Nepheline crystallization in boron-rich alumino-silicate glasses as investigated by multi-nuclear NMR, Raman, & Mossbauer spectroscopies. *J. Non-Cryst. Solids.* 2015;409:149-165.

6. Marcial J., Crum J., Neill O., et al., Nepheline structural and chemical dependence on melt composition. *Am. Mineral.* 2016;101:266-276.

7. Goel A., McCloy J. S., Fox K. M., et al., Structural analysis of some sodium and alumina rich high-level nuclear waste glasses. *J. Non-Cryst. Solids.* 2012;358:674-679.

8. Li H., Vienna J. D., Hrma P., et al., Nepheline precipitation in high-level waste glasses: Compositional effects and impact on the waste form acceptability. *Mater. Res. Soc. Symp. Proc.* 1997;465:261-268.

9. Panda S. K., Jung I. H., Critical evaluation and thermodynamic modeling of the Mg–Mn–O (MgO–MnO–MnO₂) system. *J. Am. Ceram. Soc.* 2014;97:3328-3340.

10. Boulay E., Nakano J., Turner S., et al., Critical assessments and thermodynamic modeling of BaO-SiO₂ and SiO₂-TiO₂ systems and their extensions into liquid immiscibility in the BaO-SiO₂-TiO₂ system. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 2014;47:68-82.

11. Fabrichnaya O., Lakiza S., Wang C., et al., Assessment of thermodynamic functions in the ZrO₂-La₂O₃-Al₂O₃ system. *J. Alloy Compd.* 2008;453:271-281.

12. Hillert M., Some properties of the compound energy model. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 1996;20:333-341.

13. Hillert M., Agren J., A comparison between the associate model and the two-sublattice model for melts. *Z. Metallkd.* 1986;77:794-797.

14. Duke D. A., Macdowell J. F., Karstetter B. R., Crystallization and chemical strengthening of nepheline glass-ceramics. *J. Am. Ceram. Soc.* 1967;50:67-74.

15. Palmer D. C., Stuffed derivatives of the silica polymorphs. *Rev. Mineral.* 1994;29:83-122.

16. Tait K. T., Sokolova E., Hawthorne F. C., et al., The crystal chemistry of nepheline. *Can. Mineral.* 2003;41:61-70.

17. Amoroso J. W., Nepheline nucleation and crystal growth in waste glasses: Interim report. SRNL-STI-2011-00549, Savannah River National Laboratory, Aiken, SC, 2011. 1-20.

18. Fox K. M., Edwards T. B., Refinement of the nepheline discriminator: Results of a phase II study. SRNS-STI-2008-00099, Savannah River National Laboratory, Aiken, SC, 2008. 1-110.

19. Fox K. M., Edwards T. B., Experimental results of the nepheline phase III study. SRNL-STI-2009-00608, Savannah River National Laboratory, Aiken, SC, 2009. 1-177.

20. Fox K. M., Edwards T. B., McClane D. L., Chemical composition analysis and product consistency tests supporting refinement of the nepheline model for the high aluminum Hanford glass composition region. SRNL-STI-2016-00028, Savannah River National Laboratory, Aiken, SC, 2016. 1-246.

21. Fox K. M., Edwards T. B., Peeler D. K., Nepheline formation potential in Sludge Batch 4 (SB4) and its impact on durability: Selecting glasses for a phase 3 study. WSRC-TR-2006-00053, Savannah River National Laboratory, Aiken, SC, 2006. 1-24.

22. Fox K. M., Edwards T. B., Peeler D. K., et al., Nepheline formation study for Sludge Batch 4 (SB4): Phase 3 experimental results. WSRC-TR-2006-00093, Savannah River National Laboratory, Aiken, SC, 2006. 1-182.

23. Fox K. M., Newell J. D., Edwards T. B., et al., Refinement of the nepheline discriminator: Results of a phase I study. WSRC-STI-2007-00659, Savannah River National Laboratory, Aiken, SC, 2007. 1-206.

24. Li H., Jones B., Hrma P., et al., Compositional effects on liquidus temperature of Hanford simulated high-level waste glasses precipitating nepheline (NaAlSiO₄). *Ceram. Trans.* 1998;87:279-288.

25. McCloy J. S., Schweiger M. J., Rodriguez C. P., et al., Nepheline crystallization in nuclear waste glasses: Progress toward acceptance of high-alumina formulations. *Int. J. Appl. Glass Sci.* 2011;2:201-214.

26. Lukas H., Fries S. G., Sundman B., Computational thermodynamics: The calphad method, 1sted. New York, NY: Cambridge University Press; 2007.

27. Crum J. V., Turo L. A., Riley B. J., et al., Multi-phase glass-ceramics as a waste form for combined fission products: Alkalis, alkaline earths, lanthanides, and transition metals. *J. Am. Ceram. Soc.* 2012;95:1297-1303.

28. Amoroso J., Marra J. C., Tang M., et al., Melt processed multiphase ceramic waste forms for nuclear waste immobilization. *J. Nucl. Mater.* 2014;454:12-21.

29. Ewing R. C., Long-term storage of spent nuclear fuel. Nat. Mater. 2015;14:252-257.

30. Xu Y., Wen Y., Grote R., et al., A-site compositional effects in Ga-doped hollandite materials of the form $Ba_xCs_yGa_{2x+y}T_{i8-2x-y}O_{16}$: implications for Cs immobilization in crystalline ceramic waste forms. *Sci. Rep.-UK.* 2016;6:1-8.

31. Vance E. R., Chavara D. T., Gregg D. J., et al., Synroc development-Past and present applications. *MRS Energy & Sustainability*. 2017;4:8.

32. Ringwood A. E., Kesson S. E., Ware N. G., et al., Immobilization of high level nuclear reactor wastes in SYNROC. *Nature*. 1979;278:219-223.

33. Ringwood A. E., Kesson S. E., Ware N. G., et al., The SYNROC process: A geochemical approach to nuclear waste immobilization. *Geochem. J.* 1979;13:141-165.

34. Brinkman K. S., Amoroso J. W., Tang M., Crystalline ceramic waste forms: Comparison of reference process for ceramic waste form fabrication. SRNL-STI-2013-000229, Savannah River National Laboratory, Aiken, SC, 2013. 1-40.

35. Xu H., Wu L., Zhu J., et al., Synthesis, characterization and thermochemistry of Cs-, Rb- and Sr-substituted barium aluminium titanate hollandites. *J. Nucl. Mater.* 2015;459:70-76.

36. Aubin-Chevaldonnet V., Caurant D., Dannoux A., et al., Preparation and characterization of $(Ba,Cs)(M,Ti)_8O_{16}$ (M = Al³⁺, Fe³⁺, Ga³⁺, Cr³⁺, Sc³⁺, Mg²⁺) hollandite ceramics developed for radioactive cesium immobilization. *J. Nucl. Mater.* 2007;366:137-160.

37. Amoroso J., Marra J., Conradson S. D., et al., Melt processed single phase hollandite waste forms for nuclear waste immobilization: $Ba_{1.0}Cs_{0.3}A_{2.3}Ti_{5.7}O_{16}$; A = Cr, Fe, Al. J. *Alloy Compd.* 2014;584:590-599.

38. Dandeneau C. S., Hong T., Brinkman K. S., et al., Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing. *J. Nucl. Mater.* 2018;502:113-122.

39. Wen Y., Xu Y., Brinkman K. S., et al., Atomistic scale investigation of cation ordering and phase stability in Cs-substituted Ba_{1.33}Zn_{1.33}Ti_{6.67}O₁₆, Ba_{1.33}Ga_{2.66}Ti_{5.67}O₁₆ and Ba_{1.33}A_{12.66}Ti_{5.33}O₁₆ hollandite. *Sci. Rep.-UK.* 2018;8:1-11.

40. Xu Y., Feygenson M., Page K., et al., Structural Evolution in Hollandite Solid Solutions Across the A-Site Compositional Range from Ba1.33Ga2.66Ti5.34O16 to Cs1.33Ga1.33Ti6.67O16. *J. Am. Ceram. Soc.* 2016;99:4100-4106.

41. Hillert M., The compound energy formalism. J. Alloy Compd. 2001;320:161-176.

42. Hillert M., Jansson B., Sundman B., et al., A two-sublattice model for molten solutions with different tendency for ionization. *Metall. Trans. A.* 1985;16A:261-266.

43. Bale C. W., Bélisle E., Chartrand P., et al., FactSage thermochemical software and databases, 2010–2016. *CALPHAD*. 2016;54:35-53.

44. Menkhaus T. J., Hrma P., Li H., Kinetics of nepheline crystallization from high-level waste glass. *Ceram. Trans.* 2000;107:461-468.

45. Edwards T. B., Peeler D. K., Fox K. M., The nepheline discriminator: Justification and DWPF PCCS implementation details. WSRC-STI-2006-00014, Savannah River National Laboratory, Aiken, SC, 2006.

46. Vienna J. D., Fluegel A., Kim D. S., Glass property data and models for estimating high-level waste glass volume. PNNL-18501, Pacific Northwest National Laboratory, Richland, WA, 2009. 1-561.

47. Vienna J. D., Kroll J. O., Hrma P. R., et al., Submixture model to predict nepheline precipitation in waste glasses. *Int. J. Appl. Glass Sci.* 2017;8:143-157.

48. McHale A. E., Roth R. S., Phase equilibria diagrams, Vol. XII, oxides, Westerville, OH: American Ceramic Society; 1996.

49. Dollase W. A., Thomas W. M., The crystal chemistry of silica-rich, alkali-deficient nepheline. *Contrib. Mineral. Petr.* 1978;66:311-318.

50. Stebbins J. F., Murdoch J. B., Carmichael I. S. E., et al., Defects and short-range order in nepheline group minerals: A silicon-29 nuclear magnetic resonance study. *Phys. Chem. Miner.* 1986;13:371-381.

51. Vulic P., Balic-Zunic T., Belmonte L. J., et al., Crystal chemistry of nephelines from ijolites and nepheline-rich pegmatites: influence of composition and genesis on the crystal structure investigated by X-ray diffraction. *Miner. Petrol.* 2011;101:185-194.

52. Rossi G., Oberti R., Smith D. C., The crystal structure of a K-poor Ca-rich silicate with the nepheline framework, and crystal-chemical relationships in the compositional space (K,Na,Ca,Va)8(Al,Si)16O32. *Eur. J. Mineral.* 1989;1:59-70.

53. Lambert S. L., Stegen G. E., Vienna J. D., Tank waste remediation system phase I highlevel waste feed processability assessment report. WHC-SD-WM-TI-768, Richland, WA, 1996. 203.

54. Hrma P., Piepel G. F., Schweiger M. J., et al., Property/composition relationships for Hanford high-level waste glasses melting at 1150°C, 1. PNL-10359, Pacific Northwest National Laboratory, Richland, WA, 1994. 1-347.

55. Vienna J. D., Hrma P. R., Schweiger M. J., et al., Effect of composition and temperature on the properties of high-level waste (HLW) glass melting above 1200°C. PNNL-10987, Pacific Northwest National Laboratory, Richland, WA, 1996. 1-55.

56. Hrma P., Piepel G. F., Vienna J. D., et al., Database and interim glass property models for hanford HLW glasses. PNNL-13573, Pacific Northwest National Laboratory, Richland, WA, 2001. 1-90.

57. Matlack K. S., Gan H., Gong W., et al., High level waste vitrification system improvements. VSL-07R1010-1, Vitreous State Laboratory, the Catholic University of America, Washington, DC, 2007. 1-275.

58. Schreiber H. D., Kozak S. J., Merkel R. C., et al., Redox equilibria and kinetics of iron in a borosilicate glass-forming melt. *J. Non-Cryst. Solids.* 1986;84:186-195.

59. Donald S. B., Swink A. M., Schreiber H. D., High-iron ferric glass. J. Non-Cryst. Solids. 2006;352:539-543.

60. Cacciamani G., An introduction to the calphad method and the compound energy formalism (CEF). *Tecnol. Metal. Mater. Min.* 2016;13:16-24.

61. Andersson J. O., Helander T., Hoglund L. H., et al., THERMO-CALC & DICTRA, computational tools for materials science. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 2002;26:273-312.

62. Kumar K. C. H., Wollants P., Some guidelines for thermodynamic optimisation of phase diagrams. *J. Alloy Compd.* 2001;320:189-198.

63. Saunders N., Miodownik A. P., CALPHAD (calculation of phase diagrams): A comprehensive guide, 1ed. UK, USA, Japan: Elsevier Science Ltd.; 1998.

64. Spencer P. J., Estimation of thermodynamic data for metallurgical applications. *Thermochim. Acta.* 1997;314:1-21.

65. Parr R. G., Yang W. T., Density-functional theory of the electronic structure of molecules. *Annu. Rev. Phys. Chem.* 1995;46:701-728.

66. Konigsberger E., Eriksson G., A new optimization routine for ChemSage. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 1995;19:207-214.

67. Walton W. B., Parameter estimation for nonlinear models - convergence, data and parameter uncertainty, and constraints on parameter changes. *Math. Comput. Model.* 1989;12:181-192.

68. Konigsberger E., Gamsjager H., Analysis of phase diagrams employing Bayesian excess parameter estimation. *Monatsh. Chem.* 1990;121:119-127.

69. Konigsberger E., Improvement of excess parameters from thermodynamic and phase diagram data by a sequential Bayes algorithm. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 1991;15:69-78.

70. Hillert M., Some viewpoints on the use of a computer for calculating phase diagrams. *Physica B & C.* 1981;103:31-40.

71. Berman R. G., Brown T. H., Heat capacity of minerals in the system Na₂O-K₂O-CaO-MgO-FeO-Fe₂O₃-Al₂O₃-SiO₂-TiO₂-H₂O-CO₂: representation, estimation, and high temperature extrapolation. *Contrib. Mineral. Petr.* 1985;89:168-183.

72. DeHoff R., Thermodynamics in materials science, 2nded. Boca Raton, FL: CRC Press; 2006.

73. Inden G., The role of magnetism in the calculation of phase diagrams. *Physica B & C*. 1981;103:82-100.

74. Schairer J. F., Bowen N. L., The system: Na₂O.Al₂O₃.SiO₂. *Am. J. Sci.* 1956;254:129-195.

75. Koukkari P., Introduction to constrained gibbs energy methods in process and materials research, VTT Technology, 160. VTT Technical Research Centre of Finland, Espoo, Finland, 2014. 1-100.

76. Lambotte G., Chartrand P., Thermodynamic modeling of the $(Al_2O_3 + Na_2O)$, $(Al_2O_3 + Na_2O + SiO_2)$, and $(Al_2O_3 + Na_2O + AlF_3 + NaF)$ systems. *J. Chem. Thermodyn.* 2013;57:306-334.

77. Jak E., Hayes P. C., Pelton A. D., et al., Thermodynamic modeling of the Al₂O₃–CaO–FeO–Fe₂O₃–PbO–SiO₂–ZnO system with addition of K and Na with metallurgical applications, VIII International Conference on Molten Slags, Fluxes and Salts – MOLTEN 2009. Santiago, Chile, 2009. 473-490.

78. Besmann T. M., Spear K. E., Thermochemical modeling of oxide glasses. J. Am. Ceram. Soc. 2002;85:2887-2894.

79. Spear K. E., Besmann T. M., Beahm E. C., Thermochemical modeling of glass: Application to high-level nuclear waste glass. *MRS Bull*. 1999;24:37-44.

80. Eriksson G., Wu P., Pelton A. D., Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MgO-Al₂O₃, MnO-Al₂O₃, FeO-Al₂O₃, Na₂O-Al₂O₃ and K₂O-Al₂O₃ systems. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 1993;17:189-205.

81. Lambotte G., Chartrand P., Thermodynamic optimization of the $(Na_2O + SiO_2 + NaF + SiF_4)$ reciprocal system using the modified quasichemical model in the quadruplet approximation. *J. Chem. Thermodyn.* 2011;43:1678-1699.

82. Zhang L. G., Schmetterer C., Masset P. J., Thermodynamic description of the M₂O-SiO₂ (M = K, Na) systems. *Comp. Mater. Sci.* 2013;66:20-27.

83. Chartrand P., Pelton A. D., Modeling the charge compensation effect in silica-rich Na₂O-K₂O-Al₂O₃-SiO₂ melts. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 1999;23:219-230.

84. Wu P., Eriksson G., Pelton A. D., Optimization of the thermodynamic properties and phase diagrams of the Na₂O-SiO₂ and K₂O-SiO₂ systems. *J. Am. Ceram. Soc.* 1993;76:2059-2064.

85. Romero-Serrano A., Gomez-Yanez C., Hallen-Lopez M., et al., Thermodynamic modeling of alkali metal oxide-silica binary melts. *J. Am. Ceram. Soc.* 2005;88:141-145.

86. RomeroSerrano A., Pelton A. D., Extensions of a structural model for binary silicate systems. *Metall. Mater. Trans. B.* 1995;26:305-315.

87. Zhang Z., Li G. Q., Yang Y. X., et al., Thermodynamics of the vitrified bottom ash slag from municipal solid waste incinerators-Phase relations of CaO-SiO₂-Na₂O oxide system. *Adv. Mat. Res.* 2014;881-883:574-578.

88. Swamy V., Jung I. H., Decterov S. A., Thermodynamic modeling of the Al₂O₃-B₂O₃-SiO₂ system. *J. Non-Cryst. Solids.* 2009;355:1679-1686.

89. Mao H. H., Selleby M., Sundman B., Phase equilibria and thermodynamics in the Al₂O₃-SiO₂ system - Modeling of mullite and liquid. *J. Am. Ceram. Soc.* 2005;88:2544-2551.

90. Lambotte G., Chartrand P., Thermodynamic evaluation and optimization of the Al₂O₃-SiO₂-AlF₃-SiF₄ reciprocal system using the modified quasichemical model. *J. Am. Ceram. Soc.* 2011;94:4000-4008.

91. Howald R. A., Eliezer I., Thermodynamic properties of mullite. J. Phys. Chem.-US. 1978;82:2199-2204.

92. Kaufman L., Calculation of quasibinary and quasiternary oxide systems - II. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 1979;3:27-44.

93. Dorner P., Gauckler L. J., Krieg H., et al., On the calculation and representation of multicomponent systems. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 1979;3:241-257.

94. Hillert M., Sundman B., Wang X., A thermodynamic evaluation of the Al₂O₃–SiO₂ system, 1sted. Stockholm, Sweden: KTH; 1989.

95. Dumitrescu L., Sundman B., A thermodynamic reassessment of the Si-Al-O-N System. *J. Eur. Ceram. Soc.* 1995;15:239-247.

96. Schneider H., Fischer R. X., Schreuer J., Mullite: Crystal structure and related properties. J. Am. Ceram. Soc. 2015;98:2948-2967.

97. Bragg W. L., Gottfried C., West J., The structure of β alumina. Z. Kristallogr. 1931;77:255-274.

98. Beevers C. A., Ross M. A. S., The crystal structure of "beta alumina" Na₂O·11Al₂O₃. *Z. Kristallogr.* 1937;97:59-66.

99. Hovis G. L., Spearing D. R., Stebbins J. F., et al., X-ray powder diffraction and ²³Na, ²⁷Al, and ²⁹Si MAS-NMR investigation of nepheline-kalsilite crystalline solutions. *Am. Mineral.* 1992;77:19-29.

100. Mao H. H., Hillert M., Selleby M., et al., Thermodynamic assessment of the CaO-Al₂O₃-SiO₂ system. *J. Am. Ceram. Soc.* 2006;89:298-308.

101. Benoit M., Ispas S., Tuckerman M. E., Structural properties of molten silicates from ab initio molecular-dynamics simulations: Comparison between CaO-Al₂O₃-SiO₂ and SiO₂. *Phys. Rev. B.* 2001;64:10.

102. Rolin M., Thanh P. H., The phase diagrams of the mixtures which do not react with molybdenum. *Rev. Int. Hautes. Temp.* 2. 1965;175-185.

103. Weber N., Venero A. F., Revision of the phase diagram NaAlO₂–Al₂O₃. In: 72nd Annual Meeting of the American Ceramic Society. Philadelphia, PA, USA: 1970:

104. Saxena S. K., Chatterjee N., Fei Y., et al., Thermodynamic data on oxides and silicates, 1sted. Springer-Verlag, NY: 1993.

105. Klug F. J., Prochazka S., Doremus R. H., Alumina-silica phase diagram in the mollite region. *J. Am. Ceram. Soc.* 1987;70:750-759.

106. Rys M., Investigation of thermodynamic properties of alkali metals in oxide systems relevant to coal slags, Fakultät für Maschinenwesen, Ph.D., The Rheinisch-Westfälische Technische Hochschule, Aachen, Germany, 2008. 132.

107. Kracek F. C., The system sodium oxide-silica. J. Phys. Chem.-US. 1930;34:1583-1598.

108. D'Ans J., Lottler J., Analysis of the system Na₂O-SiO₂-ZrO₂. Z. Anorg. Allg. Chem. 1930;191:1-35.

109. Meshalkin A. B., Kaplun A. B., Phase equilibria in the Na₂O-SiO₂ system. *Zhurnal Neorg. Khimii.* 2003;48:1712-1714.

110. Willgallis A., Contribution to the system SiO₂-Na₂O-NaF. *Glastech. Ber.-Glass.* 1969;42:506-509.

111. Williams J., Glasser F. P., Phase relations in the system Na₂Si₂O₅-SiO₂. *Science*. 1965;148:1589-1591.

112. Schairer J. F., Yoder Jr. H. S., The compound 3Na₂O·8SiO₂ in the system Na₂O-SiO₂. *Carnegie I Wash.* 1971;69:160-163.

113. Tilley C. E., The ternary system, Na₂SiO₃-Na₂Si₂O₅-NaAlSiO₄. Z. Kristallogr. Abt. B. 1933;43:406-421.

114. Greig J. W., Barth T. F. W., The system, Na₂O.Al₂O₃.2SiO₂ (nephelite, carnegieite)-Na₂O.Al₂O₃.6SiO₂ (albite). *Am. J. Sci.* 1938;35:93-112.

115. Spivak J., The system NaAlSiO₄-CaSiO₃-Na₂SiO₃. J. Geol. 1944;52:24-52.

116. Davis R. F., Pask J. A., Diffusion and reaction studies in the system Al₂O₃-SiO₂. *J. Am. Ceram. Soc.* 1972;55:525-531.

117. Bowen N. L., Greig J. W., The system: Al₂O₃.SiO₂. J. Am. Ceram. Soc. 1924;7:238-254.

118. Aksay I. A., Pask J. A., Stable and metastable equilibria in the system SiO₂-Al₂O₃. *J. Am. Ceram. Soc.* 1975;58:507-512.

119. Aramaki S., Roy R., Revised phase diagram for the system Al₂O₃-SiO₂. *J. Am. Ceram. Soc.* 1962;45:229-242.

120. Konopicky K., Equilibrium diagram of the system SiO₂-Al2O₃. *Bull. Soc. Chim. Fr.* 1956;33:3-6.

121. Toropov N. A., Galakhov F. Y., New data on the system Al₂O₃–SiO₂. *Dokl. Akad. Nauk*+. 1951;78:299-302.

122. Eriksson G., Pelton A. D., Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the CaO-Al₂O₃, Al₂O₃-SiO₂, and CaO-Al₂O₃-SiO₂ systems. *Metall. Mater. Trans. B.* 1993;24:807-816.

123. Hamano K., Sato T., Nakagawa Z., Properties of mullite powder prepared by coprecipitation and microstructure of fired bodies. *Nippon Seram. Kyo. Gak.* 1986;94:818-822.

124. Okada K., Otsuka N., Change in chemical composition of mullite formed from 2SiO₂·3Al₂O₃ xerogel during the formation process. *J. Am. Ceram. Soc.* 1987;70:C-245-C-247.

125. Prochazka S., Klug F. J., Infrared-transparent mullite ceramic. J. Am. Ceram. Soc. 1983;66:874-880.

126. Bouaziz R., Papin G., Rollet A. P., Contribution to the study of sodium oxide and the binary oxide-sodium hydroxide system. *Cr. Acad. Sci. C Chim.* 1966;262:1051-1054.

127. Christensen A. U., Conway K. C., Kelley K. K., High-temperature heat contents and entropies of aluminates and ferrites of lithium and sodium, and of lithium titanate. *Bureau of Mines Report of Investigations No. 5565.* 1960;7.

128. Rolin M., Thanh P. H., The phase diagrams of the mixtures not reacting with the molybdenum. 1. Equipment and procedure for the application up to 2100°C the method of the cooling curves. *Bull. Soc. Chim. Fr.* 1963;5:1030-1035.

129. Liebertz J., Formation and existence of the two Na-β-Al₂O₃ phases. *Ber. Deut. Ker. Ges.* 1972;49:288-290.

130. Le Cars Y., Thery J., Collongues R., On the non-stoichiometry and stability of aluminas β and β ". *Cr. Acad. Sci. C Chim.* 1972;274:4-7.

131. Jacob K. T., Swaminathan K., Sreedharan O. M., Potentiometric determination of activities in the two-phase fields of the system Na₂O-(α)Al₂O₃. *Electrochim. Acta.* 1991;36:791-798.

132. Hammel J. J., Experimental evidence for spinodal decomposition in glasses of the Na₂O-SiO₂ system. In: VIIth International Congress on Glass, International Commission on Glass. Brussels: 1965:

133. Morey G. W., Bowen N. L., The binary system sodium metasilicate-silica. J. Phys. Chem.-US. 1924;28:1167-1179.

134. Kracek F. C., Phase equilibrium relations in the system, Na₂SiO₃-Li₂SiO₃-SiO₂. J. Am. Chem. Soc. 1939;61:2863-2877.

135. Zaitsev A. I., Shelkova N. E., Lyakishev N. P., et al., Thermodynamic properties and phase equilibria in the Na₂O-SiO₂ system. *Phys. Chem. Chem. Phys.* 1999;1:1899-1907.

136. Zaitsev A. I., Shelkova N. E., Mogutnov B. M., Thermodynamics of Na₂O-SiO₂ melts. *Inorg. Mater+.* 2000;36:529-543.

137. Fan M., Thermochemical study of the melts Na₂O-SiO₂, Na₂O-GeO₂, Na₂O-B₂O₃ and Li₂O-B₂O₃, Fakultät für Bergbau, Hüttenwesen und Geowissenschaften. 1991. 1-98.

138. Hovis G. L., Toplis M. J., Richet P., Thermodynamic mixing properties of sodium silicate liquids and implications for liquid-liquid immiscibility. *Chem. Geol.* 2004;213:173-186.

139. Takahashi K., Yoshio T., Energy relations in alkali silicates by solution calorimetry. *Nippon Seram. Kyo. Gak.* 1970;78:35-44.

140. Tischer R. E., Heat of annealing in simple alkali silicate glasses. J. Am. Ceram. Soc. 1969;52:499-503.

141. Yamaguchi S., Imai A., Goto K. S., Activity measurement of Na₂O in Na₂O-SiO₂ melts using the beta-alumina as the solid electrolyte. *Scand. J. Metall.* 1982;11:263-264.

142. Yamaguchi S., Imai A., Goto K. S., Measurement of activity of Na₂O in Na₂O-SiO₂ binary melt using beta-alumina as a solid electrolyte. *J. Jpn. I Met.* 1983;47:736-742.

143. Tsukihashi F., Sano N., Measurement of the activity of Na₂O in Na₂O-SiO₂ melts by chemical equilibration method. *Tetsu to Hagane*. 1985;71:815-822.

144. Rego D. N., Sigworth G. K., Philbrook W. O., Thermodynamic study of Na₂O-SiO₂ melts at 1300° and 1400 °C. *Metall. Trans. B.* 1985;16:313-323.

145. Itoh H., Yokokawa T., Thermodynamic activity of Na₂O in Na₂O-SiO₂-Al₂O₃ melt. *T. Jpn. I Met.* 1984;25:879-884.

146. de Pablo-Galan L., Foster W. R., Investigation of role of beta alumina in the system Na₂O-Al₂O₃-SiO₂. *J. Am. Ceram. Soc.* 1959;42:491-498.

147. Thompson J. G., Melnitchenko A., Palethorpe S. R., et al., An XRD and electron diffraction study of cristobalite-related phases in the NaAlO₂-NaAlSiO₄ system. *J. Solid State Chem.* 1997;131:24-37.

148. Utlak S. A., Besmann T. M., Thermodynamic assessment of the pseudoternary Na₂O-Al₂O₃-SiO₂ system. *J. Am. Ceram. Soc.* 2018;101:928-948.

149. Deer W. A., Howie R. A., Wise W. S., et al., Rock-forming minerals volume 4B: Framework silicates: silica minerals, feldspathoids and the zeolites, London: The Geological Society; 2004.

150. Buerger M. J., The stuffed derivatives of the silica structures. Am. Mineral. 1954;39:600-614.

151. Buerger M. J., Klein G. E., Donnay G., Determination of the crystal structure of nepheline. *Am. Mineral.* 1954;39:805-818.

152. Sundman B., Modification of the two-sublattice model for liquids. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 1991;15:109-119.

153. Andersson J. O., Guillermet A. F., Hillert M., et al., A compound-energy model of ordering in a phase with sites of different coordination numbers. *Acta Metall. Mater.* 1986;34:437-445.

154. Havrig H., An extended version of the regular solution model for stoichiometric phases and ionic melts. *Acta Chem. Scand.* 1971;25:3199-3204.

155. Hillert M., Staffansson L. I., Regular solution model for stoichiometric phases and ionic melts. *Acta Chem. Scand.* 1970;24:3618-3626.

156. Sundman B., Agren J., A regular solution model for phases with several components and sublattices, suitable for computer applications. *J. Phys. Chem. Solids.* 1981;42:297-301.

157. Wang C., Yu H., Liu H. S., et al., Thermodynamic optimization of the Na₂O-B₂O₃ pseudo-binary system. *J. Phase Equilib.* 2003;24:12-20.

158. Yu H., Chen Q., Jin Z. P., Thermodynamic assessment of the CaO-B₂O₃ system. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 1999;23:101-111.

159. Yu H., Chen Q., Jin Z., Thermodynamic reassessment of the BaO-B₂O₃ system. *J. Phase Equilib.* 1999;20:479-484.

160. Yu H., Jin Z. P., Chen Q., et al., Thermodynamic assessment of the lithium-borate system. J. Am. Ceram. Soc. 2000;83:3082-3088.

161. Chen H. M., Chen J. M., Wang S., et al., Thermodynamic Assessment of B₂O₃-SiO₂ Binary System, 68-72. in Materials Science, Mechanical Engineering and Applied Research, Vol. 628. *Applied Mechanics and Materials*. Edited by F. Zhang. Trans Tech Publications Ltd, Durnten-Zurich, 2014.

162. Chen S. H., Su J., Wang Y., et al., Thermodynamic assessment of B₂O₃-MgO binary system. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 2015;51:67-74.

163. Morey G. W., Merwin H. E., Phase equilibrium relationships in the binary system, sodium oxide-boric oxide, with some measurements of the optical properties of the glasses. *J. Am. Chem. Soc.* 1936;58:2248-2254.

164. Milman T., Bouaziz R., Contribution to the study of sodium borates. *Ann. Chim. France.* 1968;3:311-321.

165. Liang J. K., Fang C. M., Huang Q. Z., Formation and crystallization mechanism of glasses in NaBO₂-B₂O₃ system. *Chinese Phys.* 1990;10:689-697.

166. Shartsis L., Capps W., Energy relations in binary alkali borates. J. Am. Ceram. Soc. 1954;37:27-32.

167. Navrotsky A., Hervig R. L., Roy B. N., et al., Thermochemical studies of silicate, aluminosilicate, and borosilicate glasses. *High Temp. Sci.* 1985;19:133-150.

168. Itoh M., Sato S., Yokokawa T., E.m.f. measurements of molten mixtures of lithium oxide +, sodium oxide +, and potassium oxide + boron oxide. *J. Chem. Thermodyn.* 1976;8:339-352.

169. Itoh H., Sasahira A., Maekawa T., et al., Electromotive-force measurements of molten oxide mixtures. Part 8. Thermodynamic properties of Na₂O-B₂O₃ melts. *J. Chem. Soc. Farad. T 1.* 1984;80:473-487.

170. Park J. H., Min D. J., Thermodynamic behavior of Na₂O-B₂O₃ melt. *Metall. Mater. Trans. B.* 2001;32:297-303.

171. Stegmaier V. W., Dietzel A., The importance of the basicity of glass melts and attempts to measure them. *Glastech. Ber.-Glass.* 1940;18:353-362.

172. Sato S., Yokokawa T., Kita H., et al., Thermodynamic activity of Na₂O-B₂O₃ melt - Use of stabilized zirconia as an electrode constituent. *J. Electrochem. Soc.* 1972;119:1524-1526.

173. Decterov S. A., Swamy V., Jung I. H., Thermodynamic modeling of the B₂O₃-SiO₂ and B₂O₃-Al₂O₃ systems. *Int. J. Mater. Res.* 2007;98:987-994.

174. Pelton A. D., Blander M., Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach - Application to silicate slags. *Metall. Trans. B.* 1986;17:805-815.

175. Pelton A. D., Degterov S. A., Eriksson G., et al., The modified quasichemical model I - Binary solutions. *Metall. Mater. Trans. B.* 2000;31:651-659.

176. Baumann H. N., Moore C. H., Electric furnace boroaluminate. J. Am. Ceram. Soc. 1942;25:391-394.

177. Scholze H., About aluminum borates. Z. Anorg. Allg. Chem. 1956;284:272-277.

178. Kim K. H., Hummel F. A., Studies in lithium oxide systems: XII, Li₂O-B₂O₃-Al₂O₃. *J. Am. Ceram. Soc.* 1962;45:487-489.

179. Gielisse P. J., Investigation of phase equilibria in the system alumina-boron oxidesilica, Mineralogy, Doctor of Philosophy. The Ohio State University, Columbus, OH, 1961. 1-96.

180. Gielisse P. J., Foster W. R., The system Al₂O₃-B₂O₃. Nature. 1962;195:69-70.

181. Rymon-Lipinski T., Hennicke H., Lingenberg W., Decomposition of 9Al₂O₃·2B₂O₃ at high temperatures. *Keram. Z.* 1985;37:450-453.

182. Mazza D., Vallino M., Busca G., Mullite-type structures in the systems $Al_2O_3-Me_2O$ (Me = Na,A) and $Al_2O_3-B_2O_3$. J. Am. Ceram. Soc. 1992;75:1929-1934.

183. Rockett T. J., Foster W. R., Phase relations in the system boron oxide-silica. J. Am. Ceram. Soc. 1965;48:75-80.

184. Pichavant M., Study of the SiO-2-B2O3 system at one kb. Phase diagram and thermodynamic interpretation. *B Mineral*. 1978;101:498-502.

185. Charles R. J., Wagstaff F. E., Metastable immiscibility in the B₂O₃-SiO₂ system. *J. Am. Ceram. Soc.* 1968;51:16-20.

186. Morey G. W., The ternary system Na₂O-B₂O₃-SiO₂. *J. Soc. Glass Tech.* 1951;35:270-283.

187. Ghanbari-Ahari K., Cameron A. M., Phase diagram of Na₂O-B₂O₃-SiO₂ system. J. Am. Ceram. Soc. 1993;76:2017-2022.

188. Rockett T. J., Foster W. R., The system silica-sodium tetraborate. *J. Am. Ceram. Soc.* 1966;49:30-33.

189. Asai K., Yokokawa T., Thermodynamic activity of Na₂O in Na₂O-B₂O₃-SiO₂ melt. *T. Jpn. I Met.* 1982;23:571-577.

190. Konakov V. G., Kozhina E. L., Shultz M. M., A study of the acid-base properties of melts in the Na₂O-B₂O₃-SiO₂ system: I. Composition joins with a Na₂O content of less than 20 mol %. *Glass Phys. Chem.* 2001;27:182-187.

191. Kozhina E. L., Shultz M. M., Thermodynamic properties of sodium-containing glassforming oxide melts. *Ceram.-Silikaty*. 2000;44:91-97.

192. Binev D., Nikolov V., Peshev P., Regions of phase crystallization in the ternary system Na₂O-Al₂O₃-B₂O₃. *J. Alloy Compd.* 2005;391:256-261.

193. Abdullaev G. K., Rzazade P. F., Mamedov K. S., The Na₂O-Al₂O₃-B₂O₃ system. *Zhurnal Neorg. Khimii.* 1983;28:208-211.

194. Peshev P., Pechev S., Nikolov V., et al., Studies on some ternary oxyborates of the $Na_2O-Me_2O_3-B_2O_3$ (Me = rare earth or aluminum) systems: Synthesis, structure and crystal growth. *J. Solid State Chem.* 2006;179:2834-2849.

195. He M., Chen X. L., Zhou T., et al., Crystal structure and infrared spectra of Na₂Al₂B₂O₇. *J. Alloy Compd.* 2001;327:210-214.

196. He M., Kienle L., Simon A., et al., Re-examination of the crystal structure of Na₂Al₂B₂O₇: Stacking faults and twinning. *J. Solid State Chem.* 2004;177:3212-3218.

197. He M., Chen X. L., Okudera H., et al., $(K_{1-x}Na_x)_2Al_2B_2O_7$ with $0 \le x \le 0.6$: A promising nonlinear optical crystal. *Chem. Mat.* 2005;17:2193-2196.

198. Perras F. A., Bryce D. L., Multinuclear magnetic resonance crystallographic structure refinement and cross-validation using experimental and computed electric field gradients: Application to Na₂Al₂B₂O₇. *J. Phys. Chem. C.* 2012;116:19472-19482.

199. Meng X. Y., Gao J. H., Wang Z. Z., et al., Structure instability of A₂Al₂B₂O₇ (A=K, Na) crystals. *J. Phys. Chem. Solids.* 2005;66:1655-1659.

200. Salman S. M., Salama S. N., Abo-Mosallam H. A., Crystallization features and physico-chemical properties of alkali and alkaline aluminoborate glass-ceramics. *J. Aust. Ceram. Soc.* 2017;53:953-961.

201. Wakasugi T., Ota R., Fukunaga J., Glass-forming ability and crystallization tendency evaluated by the DTA method in the Na₂O-B₂O₃-Al₂O₃ system. *J. Am. Ceram. Soc.* 1992;75:3129-3132.

202. Wakasugi T., Ota R., Nozawa Y., et al., Amorphous regions and crystallization behavior of rf-sputtered films in the B₂O₃-Na₂O-Al₂O₃ system. *J. Non-Cryst. Solids.* 1995;191:238-247.

203. Dietzel A., Scholze H., Investigations in the system B₂O₃-Al₂O₃-SiO₂. *Glastech. Ber.-Glass.* 1955;28:47-51.

204. Kopp H., III. Investigations of the specific heat of solid bodies. *Phil. Trans.* 1865;155:71-202.

205. Latimer W. M., Methods of estimating the entropies of solid compounds. J. Am. Chem. Soc. 1951;73:1480-1482.

206. Schneider H., Florke O. W., Stoeck R., The NaAlSiO₄ nepheline-carnegieite solidstate transformation. *Z. Kristallogr.* 1994;209:113-117.

207. Yu H., Liu H. S., Jin Z. P., Thermodynamic calculation of the Li₂O-BaO-B₂O₃ pseudo-ternary phase diagram. *Z. Metallkd.* 1999;90:499-504.

208. Barin I., Thermochemical data of pure substances, Weinheim, Federal Republic of Germany; New York, NY, USA: VCH; 1989.

209. Chase M. W., NIST-JANAF Thermochemical Tables, 4th Edition, American Institute of Physics; 1998.

210. Taylor J. R., Dinsdale A. T., Hillert M., et al., A critical assessment of thermodynamic and phase diagram data for the Al-O system. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 1992;16:173-179.

211. Swamy V., Decterov S. A., Pelton A. D., Thermodynamic assessment of the Ge-Si-O-Cl-H system. *Glass Sci. Technol.* 2003;76:62-70.

212. Burgess C. H., Junr A. H., Some physical characters of the sodium borates, with a new and rapid method for the determination of melting points. *P. R. Soc. London.* 1904;74:285-295.

213. van Klooster H. S., About the behavior of metaboric and metaphosphoric acids in the melts of their alkali salts. *Z. Anorg. Chem.* 1911;69:122-134.

214. Cole S. S., Taylor N. W., Scholes S. R., The system Na₂O-B₂O₃, III. The optical properties, x-ray patterns, and melting points of the anhydrous sodium borates. *J. Am. Ceram. Soc.* 1935;18:79-81.

215. Day A. L., Allen E. T., The isomorphism and thermal properties of the feldspars. *Am. J. Sci.* 1905;19:93-142.

216. Ponomareff J. E., Investigation of the glassy state by the method of enforced crystallisation. *J. Soc. Glass Tech.* 1927;11:39-52.

217. Menzel H., Information on boric acids and boric acid alkali salts. IX. The system Na₂B₄O₇-H₂O. *Z. Anorg. Allg. Chem.* 1935;224:1-22.

218. Weber N., Venero A. F., Revision of Phase Diagram NaAlO₂-Al₂O₃. *Am. Ceram. Soc. Bull.* 1970;49:491-492.

219. Hoch M., Thermodynamic properties and phase diagrams of the binary systems B2O3-Ga2O3, B2O3-Al2O3 and B2O3-In2O3. J. Alloy Compd. 2001;320:267-275.

220. Selleby M., An assessment of the Fe-O-Si system. *Metall. Mater. Trans. B.* 1997;28:563-576.

221. Fabrichnaya O. B., Sundman B., The assessment of thermodynamic parameters in the Fe-O and Fe-Si-O systems. *Geochim. Cosmochim. Ac.* 1997;61:4539-4555.

222. Dreval L., Zienert T., Fabrichnaya O., Calculated phase diagrams and thermodynamic properties of the Al₂O₃-Fe₂O₃-Fe₀ system. *J. Alloy Compd.* 2016;657:192-214.

223. Moosavi-Khoonsari E., Jung I. H., Critical evaluation and thermodynamic optimization of the Na₂O-FeO-Fe₂O₃ system. *Metall. Mater. Trans. B.* 2016;47:576-594.

224. Zienert T., Fabrichnaya O., Thermodynamic assessment and experiments in the system MgO-Al₂O₃. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 2013;40:1-9.

225. Leitner J., Voňka P., Sedmidubský D., et al., Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides. *Thermochim. Acta*. 2010;497:7-13.

226. Rankin G. A., Merwin H. E., The ternary system CaO-Al₂O₃-MgO. *J. Am. Chem. Soc.* 1916;38:568-588.

227. Tsutsumi K., Ohtake J., Nagasaka T., et al., Crystallization behavior of Li₂O-SiO₂, Na₂O-SiO₂ and Na₂O-CaO-SiO₂ glasses. *Tetsu to Hagane*. 1998;84:464-469.

228. Vedishcheva N. M., Shakhmatkin B. A., Wright A. C., Thermodynamic modelling of the structure and properties of glasses in the systems Na₂O-B₂O₃-SiO₂ and Na₂O-CaO-SiO₂. *Phys. Chem. Glasses.* 2005;46:99-107.

229. Zhang Z., Xiao Y. P., Voncken J., et al., Phase Equilibria in the Na₂O-CaO-SiO₂ system. *J. Am. Ceram. Soc.* 2011;94:3088-3093.

230. Hodge J. D., Phase Relations in the System Na₂O-Li₂O-Al₂O₃. J. Am. Ceram. Soc. 1984;67:183-185.

231. Weber N., Venero A. F., Subsolidus Relations in System NaAlO₂-MgAl₂O₄-Al₂O₃. *Am. Ceram. Soc. Bull.* 1970;49:498.

232. Imai A., Harata M., Ionic conduction of impurity-doped β-alumina ceramics. *Jpn. J. Appl. Phys.* 1972;11:180-185.

233. Duncan G. K., West A. R., Formation of Beta Aluminas in the System Li₂O-Na₂O-Al₂O₃. *Solid State Ionics*. 1983;9-10:259-264.

234. Huang W. M., Hillert M., Wang X. Z., Thermodynamic assessment of the CaO-MgO-SiO₂ system. *Metall. Mater. Trans. A.* 1995;26:2293-2310.

235. Chastel R., Bergman C., Rogez J., et al., Excess thermodynamic functions in ternary Na₂O-K₂O-SiO₂ melts by Knudsen cell mass spectrometry. *Chem. Geol.* 1987;62:19-29.

236. Moya J. S., Criado E., DeAza S., The K₂O·Al₂O₃-Al₂O₃ system. *J. Mater. Sci.* 1982;17:2213-2217.

237. Eliezer I., Howald R. A., High-temperature thermodynamics and phase equilibria in potassium oxide-aluminum oxide system. *High Temp. Sci.* 1978;10:1-16.

238. Roth R. S., Phase equilibria research in portions of the system K₂O-MgO-Fe₂O₃-Al₂O₃-SiO₂. *Adv. Chem. Ser.* 1980;186:391-408.

239. Rollet A. P., Borate and potassium. Study of the B₂O₃⁻K₂O system. *C. R. Hebd.* Seances Acad. Sci. 1935;200:1763-1765.

240. Rollet A. P., The polymorphism of potassium pentaborate 5B₂O₃.K₂O. C. R. Hebd. Seances Acad. Sci. 1936;202:1863-1865.

241. Polyakova I. G., Tokareva E. V., A study of phase equilibria in the potassium borate system: Glass crystallization and solid state reaction. *Glass Phys. Chem*+. 1997;23:354-367.

242. Kaplun A. B., Meshalkin A. B., Phase equilibria of the K₂O-B₂O₃ system. *Russ. J. Inorg. Chem*+. 2002;47:1058-1062.

243. Stahleisen V., Eisenhüttenleute V. D., Slag atlas, 2ed. Dusseldorf: Verlag Stahleisen GmbH; 1995.

244. Fujiwara H., Moriya H., Iwase M., Thermochemical activities in $Fe_xO+B_2O_3$ slags and phase relation in the system Fe + B + O. *Ironmak. Steelmak.* 1991;18:43-49.

245. Jakobsson L. K., Tranell G., Jung I. H., Experimental investigation and thermodynamic modeling of the B₂O₃-FeO-Fe₂O₃-Nd₂O₃ system for recycling of NdFeB magnet scrap. *Metall. Mater. Trans. B.* 2017;48:60-72.

246. Zhang C. T., Ji C. L., Activities of components in MgO–B₂O₃ melt. *Acta Metall. Sin.* 1989;25:240-243.

247. Wang Z. C., Tong S. X., Liu X., et al., Activity of MgO in $\{(1-x)MgO+xB_2O_3\}$, determined by (slag+metal) equilibrium at the temperature 1723 K, using germanium as metal solvent. *J. Chem. Thermodyn.* 1995;27:873-878.

248. Ahmadzadeh M., Marcial J., McCloy J., Crystallization of iron-containing sodium aluminosilicate glasses in the NaAlSiO4-NaFeSiO4 join. *J. Geophys. Res.-Sol. Ea.* 2017;122:2504-2524.

249. Onuma K., Yoshikawa K., Nepheline solid solutions in the system Na₂O-Fe₂O₃-Al₂O₃-SiO₂. *Jpn. Assoc. Min. Sci.*, 1972;67:395-401.

250. Onuma K., Iwai T., Yagi K., Nepheline-"iron nepheline" solid solutions. J. Fac. Sci. Hokkaido U. Ser. 4. 1972;15:179-190.

251. Yagi A., A reconnaissance of the systems acmite-diopside and acmite-nepheline. *Carnegie I Wash.* 1961;61:98-99.

252. Bailey D. K., Schairer J. F., The system Na₂O-Al₂O₃-Fe₂O₃-SiO₂ at 1 atmosphere and petrogenesis of alkaline rocks. *J. Petrol.* 1966;7:114-170.

253. Ahmadzadeh M., Scrimshire A., Bingham P. A., et al., Structural role of iron in nepheline-based aluminosilicates for nuclear waste applications, Waste Management Symposia. Phoenix, Az, 2018. 1-13.

254. Haccuria E., Crivits T., Hayes P. C., et al., Selected Phase Equilibria Studies in the Al₂O₃-CaO-SiO₂ System. *J. Am. Ceram. Soc.* 2016;99:691-704.

255. Bale C., Chartrand P., Degterov S. A., et al., FactSage thermochemical software and databases. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 2002;26:189-228.

256. Mao H. H., Fabrichnaya A., Selleby M., et al., Thermodynamic assessment of the MgO-Al₂O₃-SiO₂ system. *J. Mater. Res.* 2005;20:975-986.

257. Badger W. B., Hummel F. A., Phase equilibrium in the system LiAlSiO4-NaAlSiO4-SiO2. J. Am. Ceram. Soc. 1985;68:C46-C47.

258. Ota T., Yamai I., Hayashi T., Nepheline gradient solid solutions. J. Mater. Sci. 1995;30:2701-2705.

259. Marcial J., Kabel J., Saleh M., et al., Structural dependence of crystallization in glasses along the nepheline (NaAlSiO₄) - eucryptite (LiAlSiO₄) join. *J. Am. Ceram. Soc.* 2018;101:2840-2855.

260. Rodriguez C. P., McCloy J. S., Schweiger M. J., et al., Optical basicity and nepheline crystallization in high alumina glasses. PNNL-20184, Pacific Northwest National Laboratory, Richland, WA, 2011. 1-92.

261. El-Damrawi G., Muller-Warmuth W., Doweidar H., et al., ¹¹B, ²⁹Si and ²⁷Al nuclear magnetic resonance studies of Na₂O-Al₂O₃-B₂O₃-SiO₂ glasses. *Phys. Chem. Glasses*. 1993;34:52-57.

262. Yamashita H., Inoue K., Nakajin T., et al., Nuclear magnetic resonance studies of 0.139MO (or M'₂O) \cdot 0.673SiO₂ \cdot (0.188 - x)Al₂O₃ \cdot xB₂O₃ (M = Mg, Ca, Sr and Ba, M' = Na and K) glasses. *J. Non-Cryst. Solids.* 2003;331:128-136.

263. Du L.-S., Stebbins J. F., Network connectivity in aluminoborosilicate glasses: A high-resolution ¹¹B, ²⁷Al and ¹⁷O NMR study. *J. Non-Cryst. Solids.* 2005;351:3508-3520.

264. Hallstedt B., Assessment of the CaO-Al₂O₃ system. *J. Am. Ceram. Soc.* 1990;73:15-23.

265. Eriksson G., Wu P., Blander M., et al., Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MnO-SiO₂ and CaO-SiO₂ systems. *Can. Metall. Q.* 1994;33:13-21.

266. Kulkarni N. S., Besmann T. M., Spear K. E., Thermodynamic optimization of lithiaalumina. J. Am. Ceram. Soc. 2008;91:4074-4083.

267. Konar B., Van Ende M. A., Jung I. H., Critical evaluation and thermodynamic optimization of the Li-O, and Li₂O-SiO₂ systems. *J. Eur. Ceram. Soc.* 2017;37:2189-2207.

268. Fabrichnaya O. B., Thermodynamic modelling of melting in the system FeO-MgO-SiO₂-O₂ at pressure of 1 bar. *CALPHAD*. 2000;24:113-131.

269. Kracek F. C., Bowen N. L., Morey G. W., Equilibrium relations and factors influencing their determination in the system K₂SiO₃-SiO₂. *J. Phys. Chem.-US.* 1937;41:1183-1193.

270. Zaitsev A. I., Shelkova N. E., Lyakishev N. P., et al., The thermodynamic properties of K₂O-SiO₂ melts. *Russ. J. Phys. Ch.* 2000;74:907-913.

271. Steiler J. M., Thermochemical data for the steel industry, Commission of the European Community, Report EUR 7820. 1982.

272. Cook L. P., Plante E. R., Phase diagram of the system Li₂O–Al₂O₃. *Ceram. Trans.* 1992;27:193-222.

273. Skokan A., Wedemeyer H., Vollath D., et al., Thermal properties and application of potential lithium silicate breeder materials, 1255-1259. in Fusion Technology 1986. Pergamon, 1986.

274. Claus S., Kleykamp H., SmykatzKloss W., Phase equilibria in the Li₄SiO₄-Li₂SiO₃ region of the pseudobinary Li₂O-SiO₂ system. *J. Nucl. Mater.* 1996;230:8-11.

275. Meshalkin A. B., Kaplun A. B., Phase equilibria in the range 33.33-58 mol % SiO₂ of the Li₂O-SiO₂ system. *Russ. J. Inorg. Chem.* 2004;49:772-774.

276. Kracek F. C., The binary system Li₂O-SiO₂. J. Phys. Chem.-US. 1930;34:2641-2650.

277. Murthy M. K., Hummel F. A., Phase equilibria in the system lithium metasilicate-forsterite-silica. J. Am. Ceram. Soc. 1955;38:55-63.

278. Charles R. J., Activities in Li₂O-, Na₂O-, and K₂O-SiO₂ solutions. *J. Am. Ceram. Soc.* 1967;50:631-641.

279. Shul'ts M. M., Kozhina E. L., Shakhmatkin B. A., Thermodynamic properties of Li₂O-SiO₂ melts. *Vestn. Lenin. U Fiz. Kh.* 1986;1:55-60.

280. Morishita M., Navrotsky A., Wilding M. C., Direct measurement of relative partial molar enthalpy of SiO₂ in SiO₂-M₂O (M=Li, Na, K, Cs) binary and SiO₂-CaO-Al₂O₃ ternary melts. *J. Am. Ceram. Soc.* 2004;87:1550-1555.

281. Rollet A. P., Bouaziz R., The binary lithium oxide-boric anhydride system. *Cr. Hebd. Acad. Sci.* 1955;240:2417-2419.

282. Sastry B. S. R., Hummel F. A., Studies in lithium oxide systems: I, Li₂O·B₂O₃-B₂O₃. *J. Am. Ceram. Soc.* 1958;41:7-17.

283. Sastry B. S. R., Hummel F. A., Studies in lithium oxide systems: V, Li2O-Li2O·B₂O₃. *J. Am. Ceram. Soc.* 1959;42:216-218.

284. Ostvold T., Kleppa O. J., Thermochemistry of liquid borates. II. Partial enthalpies of solution of boric oxide in its liquid mixtures with lithium, sodium, and potassium oxides. *Inorg. Chem.* 1970;9:1395-1400.

285. Nurse R. W., Welch J. H., Majumdar A. J., The CaO-Al₂O₃ system in a moisture-free atmosphere. *Brit. Ceram. Trans. J.* 1965;64:409-418.
286. Rolin M., T. P. H., The phase diagrams of the mixtures not reacting with molybdenum. *Rev. Int. Hautes. Temp.* 1965;2:175-185.

287. Rankin G. A., Wright F. E., The ternary system CaO-Al₂O₃-SiO₂, with optical study by F. E. Wright. *Am. J. Sci.* 1915;39:1-79.

288. Shepherd E. S., Rankin G. A., The binary systems of alumina with silica, lime, and magnesia; with optical study by Fred. Eugene Wright. *Am. J. Sci.* 1909;28:293-333.

289. Nityanand N., Fine H. A., The effect of TiO₂ additions and oxygen potential on liquidus temperatures of some CaO-Al₂O₃ melts. *Metall. Trans. B.* 1983;14:685-692.

290. Allibert M., Chatillon C., Jacob K. T., et al., Mass-spectrometric and electrochemical studies of thermodynamic properties of liquid and solid phases in the system CaO-Al₂O₃. *J. Am. Ceram. Soc.* 1981;64:307-314.

291. Zou Y., Zhou J., Xu Y., et al., Some aspects of the thermodynamics of melts. *Acta Metall. Sin.* 1982;18:133-140.

292. Cameron J., Gibbons T. B., Taylor J., Calcium sulphide solubilities and lime activities in lime-alumina-silica system. *J. Iron. Steel I.* 1966;204:1223-1228.

293. Sharma R. A., Richardson F. D., Activities in lime-alumina melts. J. Iron. Steel I. 1961;198:386-390.

294. Edmunds D. M., Taylor J., Reaction CaO+3C=CaC₂+CO and activity of lime in CaO-Al₂O₃-CaF₂ system. *J. Iron. Steel I.* 1972;210:280-283.

295. Greig J. W., Immiscibility in silicate melts. Am. J. Sci. 1927;13:1-44.

296. Hageman V. B. M., Vandenberg G. J. K., Janssen H. J., et al., A reinvestigation of liquid immiscibility in the SiO₂-CaO system. *Phys. Chem. Glasses.* 1986;27:100-106.

297. Tewhey J. D., Hess P. C., The two phase region in the CaO-SiO₂ system: Experimental data and thermodynamic analysis. *Phys. Chem. Glasses*. 1979;20:41-53.

298. Osborn E. F., Muan A., Phase Equilibrium Diagrams of Oxide Systems, S. Na₂O-Al₂O₃-SiO₂. American Ceramic Society and the Edward Orton, Jr., Ceramic Foundation, 1960.

299. Rein R. H., Chipman J., Activities in liquid solution SiO₂-CaO-MgO-Al₂O₃ at 1600°C. *T. Metall. Soc. AIME.* 1965;233:415-425.

300. Carter P. T., Macfarlane T. G., Part II - The thermodynamic properties of CaO-SiO₂ slags. *J. Iron. Steel I.* 1957;185:62-66.

301. Kay D. A. R., Taylor J., Activities of silica in the lime+alumina+silica system. *T. Faraday Soc.* 1960;56:1372-1386.

302. Sharma R. A., Richardson F. D., Solubility of calcium sulphide and activities in limesilica melts. *J. Iron. Steel I.* 1962;200:373-379.

303. Carlson E. T., The system: CaO-B₂O₃. Bur. Stand. J. Res. 1932;9:825-832.

304. Hageman V. B. M., Oonk H. A. J., Liquid immiscibility in the B₂O₃-MgO, B₂O₃-CaO, B₂O₃-SrO, and B₂O₃-BaO systems. *Phys. Chem. Glasses.* 1987;28:183-187.

305. Ohta Y., Morinaga K., Yanagase T., Liquid-liquid immiscibility in several binary borate systems. *J. Ceram. Soc. Jpn.* 1982;90:511-516.

306. Klein J., Müller F., Measurement of the enthalpy of mixing of the liquid system CaO-B₂O₃ by drop calorimetry. *High Temp.-High Press*. 1987;19:201-209.

307. Muller F., Demirok S., Thermochemical study of the liquid systems BaO-B₂O₃ and CaO-B₂O₃. *Glastech. Ber.-Glass.* 1989;62:142-149.

308. Knick R., Kohlmeyer E. J., On the molten properties of soda-iron oxide mixtures. *Z. Anorg. Allg. Chem.* 1940;244:67-84.

309. Atlas L. M., Sumida W. K., Solidus, subsolidus, and subdissociation phase equilibria in the system Fe-Al-O. *J. Am. Ceram. Soc.* 1958;41:150-160.

310. Hansson R., Hayes P. C., Jak E., Experimental study of phase equilibria in the Al-Fe-Zn-O system in air. *Metall. Mater. Trans. B.* 2004;35:633-642.

311. Ladavos A. K., Bakas T. V., The Al₂O₃-Fe₂O₃ mixed oxidic system, I. Preparation and characterization. *React. Kinet. Catal. L.* 2001;73:223-228.

312. Muan A., Gee C. L., Phase equilibrium studies in the system iron oxide-Al₂O₃ in air and at 1 atm. O₂ pressure. *J. Am. Ceram. Soc.* 1956;39:207-214.

313. Rhamdhani M. A., Hidayat T., Hayes P. C., et al., Subsolidus phase equilibria of Fe-Ni-X-O (X = Mg, Al) systems in air. *Metall. Mater. Trans. B.* 2009;40:25-38.

314. Richards R. G., White J., Phase relationships of iron-oxide-containing spinels. Part I. Relationships in the system Fe-Al-O. *Brit. Ceram. Trans. J.* 1954;53:233-270.

315. Turnock A. C., Eugster H. P., Fe-Al oxides: Phase relationships below 1,000°C. J. Petrol. 1962;3:533-565.

316. Joubert J. C., Shirk T., White W. B., et al., Stability infrared spectrum and magnetic properties of FeBO₃. *Mater. Res. Bull.* 1968;3:671-676.

317. Makram H., Touron L., Loriers J., Phase relations in the system Fe₂O₃·B₂O₃ and its application in single crystal growth of FeBO₃. *J. Cryst. Growth.* 1972;13-14:585-587.

318. Dai W., Seetharaman S., Staffansson L. I., Phase relationships in the system Fe-Na-O. *Metall. Trans. B.* 1984;15:319-327.

319. Galakhov F. Y., Alumina regions of ternary aluminosilicate systems. Communication 1. The systems FeO-Al₂O₃-SiO₂ and MnO-Al₂O₃-SiO₂. *Izv. An. SSSR.* 1957;539-545.

320. Novokhatsky I. A., Belov B. F., Phase equilibria and distribution of elements in the Fe-O-Al system. *Izv. An. SSSR.* 1966;1:38-48.

321. Oelsen W., Heynert G., The reactions between iron-manganese melts and the melts of their aluminates. *Arch. Eisenhuttenwes.* 1955;26:567-575.

322. Fischer W. A., Hoffmann A., The phase diagram ferrous oxide-aluminium oxide. *Arch. Eisenhuttenwes.* 1956;27:343-346.

323. Rosenbach K., Schmitz J. A., Investigations in the ternary-system iron(II)-oxide-chromium(III)-oxide-alumina. *Arch. Eisenhuttenwes*. 1974;45:843-847.

324. Greig J. W., On liquid immiscibility in the system FeO-Fe₂O₃,-Al₂O₃-SiO₂. *Am. J. Sci.* 1927;14:473-484.

325. Muan A., Phase equilibria in the system FeO-Fe₂O₃-SiO₂. *T. Am. I Min. Met. Eng.* 1955;203:965-976.

326. Allen W. C., Snow R. B., The orthosilicate-iron oxide portion of the system CaO-"FeO"-SiO₂. J. Am. Ceram. Soc. 1955;38:264-280.

327. Bowen N. L., Schairer J. F., The system, FeO-SiO₂. Am. J. Sci. 1932;24:177-213.

328. Michal E. J., Schuhmann R., Thermodynamics of iron-silicate slags: Slags saturated with solid silica. *T. Am. I Min. Met. Eng.* 1952;194:723-728.

329. Schuhmann R., Ensio P. J., Thermodynamics of iron-silicate slags: Slags saturated with gamma iron. *T. Metall. Soc. AIME*. 1951;194:401-412.

330. Bodsworth C., The activity of ferrous oxide in silicate melts. J. Iron. Steel I. 1959;193:13-24.

331. Distin P. A., Whiteway S. G., Masson C. R., Solubility of oxygen in liquid iron from 1785° to 1960°C. A new technique for the study of slag-metal equilibria. *Can. Metall. Q.* 1971;10:13-18.

332. Alper A. M., McNally R. N., Ribbe P. H., et al., The system MgO-MgAl₂O₄. *J. Am. Ceram. Soc.* 1962;45:263-268.

333. Fujii K., Nagasaka T., Hino M., Activities of the constituents in spinel solid solution and free energies of formation of MgO, MgO · Al₂O₃. *ISIJ Int.* 2000;40:1059-1066.

334. Mori T., Solubility of Al₂O₃ in MgO. J. Cer. Assoc. Jpn. 1982;90:551-552.

335. Viechnicki D., Schmid F., McCauley J. W., Liquidus-solidus determinations in the system MgAl₂O₄-Al₂O₃. *J. Am. Ceram. Soc.* 1974;57:47-48.

336. Wartenberg H. V., Reusch H. J., Melt diagrams of ultrafine oxyde. IV. (Aluminum oxide). Z. Anorg. Allg. Chem. 1932;207:1-20.

337. Viertel H., Seifert F., Thermal stability of defect spinels in the system MgAl₂O₄-Al₂O₄. *Neues. Jb. Miner. Abh.* 1980;140:89-101.

338. Shirasuka K., Yamaguchi G., Precise measurement of the crystal data and the solid solution range of the defective spinel, MgO·nAl₂O₃. J. Cer. Assoc. Jpn. 1974;82:650-653.

339. Hageman V. B. M., Oonk H. A. J., Liquid immiscibility in the $SiO_2 + MgO$, $SiO_2 + SrO$, $SiO_2 + Al_2O_3$, and $SiO_2 + Y_2O_3$ systems. *Phys. Chem. Glasses*. 1986;27:194-198.

340. Davis H. M., Knight M. A., The system magnesium oxide-boric oxide. J. Am. Ceram. Soc. 1945;28:97-102.

341. Mutluer T., Timucin M., Phase quilibria in the system MgO-B₂O₃. *J. Am. Ceram. Soc.* 1975;58:196-197.

342. Kim D., Schweiger M. J., Rodriguez C. P., et al., Formulation and characterization of waste glasses with varying processing temperature. PNNL-20774, Pacific Northwest National Laboratory, Richland, WA, 2011. 1-178.

343. Kim D., Vienna J. D., Peeler D. K., et al., Improved alumina loading in high-level waste glasses, Waste Management. Phoenix, AZ, 2008. 1-12.

344. Schweiger M. J., Riley B. J., Crum J. V., et al., Expanded high-level waste glass property data development: Phase I. PNNL-17950, Pacific Northwest National Laboratory, Richland, WA, 2011. 1-227.

345. Matlack K. S., Gan H., Chaudhuri M., et al., Melt rate enhancement for high aluminum HLW glass formulations. VSL-08R1360-1, Vitreous State Laboratory, the Catholic University of America, Washington, DC, 2008. 1-310.

346. Matlack K. S., Kot W. K., Pegg I. L., et al., DM100 and DM1200 melter testing with high waste loading glass formulations for Hanford high aluminum HLW streams. VSL-09T1690-1, Vitreous State Laboratory, the Catholic University of America, Washington, DC, 2009. 1-64.

347. Matlack K. S., Kot W. K., Gan H., et al., Glass formulation development and testing for DWPF high-Al₂O₃ HLW sludges. VSL-10R1670-1, Vitreous State Laboratory, the Catholic University of America, Washington, DC, 2010. 1-122.

348. Johnson F. C., Edwards T. B., Results of the FY09 enhanced DOE high-level waste melter throughput studies at SRNL. SRNL-STI-2009-00778, Savannah River National Laboratory, Aiken, SC, 2010. 1-386.

349. Fox K. M., Peeler D. K., Edwards T. B., et al., International study of aluminum impacts on crystallization in U.S. high level waste glass. SRNS-STI-2008-00057, Savannah River National Laboratory, Aiken, SC, 2008. 1-172.

350. Peeler D. K., Edwards T. B., Herman C. C., et al., Development of high waste loading glasses for advanced melter technologies. WSRC-TR-2002-00426, Savannah River National Laboratory, Aiken, SC, 2002. 1-78.

351. Peeler D. K., Edwards T. B., Reamer I. A., et al., Nepheline formation study for sludge batch 4 (SB4): Phase 1 experimental results. WSRC-TR-2005-00371, Savannah River National Laboratory, Aiken, SC, 2005. 1-174.

352. Peeler D. K., Edwards T. B., Best D. R., et al., Nepheline formation study for sludge batch 4 (SB4): Phase 2 experimental results. WSRC-TR-2006-00006, Savannah River National Laboratory, Aiken, SC, 2006. 1-205.

353. Billings A. L., Edwards T. B., Time-temperature-transformation (TTT) diagrams for the sludge batch 3 - frit 418 glass system. SRNL-STI-2009-00025, Savannah River National Laboratory, Aiken, SC, 2009. 1-36.

354. Billings A. L., Edwards T. B., Time-temperature-transformation (TTT) diagrams for future waste compositions. SRNL-STI-2010-00373, Savannah River National Laboratory, Aiken, SC, 2010. 1-49.

355. Smith E. C., Butler T. A., Ciorneiu B., et al., Advanced Joule Heated Melter Design to Reduce Hanford Waste Treatment Plant Operating Costs - 11131, Waste Management 2011. Phoenix, AZ, 2011. 1-9.

356. Guerrero H. N., Bickford D. F., DWPF melter air-lift bubbler: Development and testing for increasing glass melt rates and waste dissolution. WSRC-TR-2002-0196, Savannah River National Laboratory, Aiken, SC, 2002. 1-23.

357. Vance E. R., Begg B. D., Gregg D. J., 10 - Immobilization of high-level radioactive waste and used nuclear fuel for safe disposal in geological repository systems, 269-295. in Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste (Second Edition). Edited by M. J. Apted and J. Ahn. Woodhead Publishing, 2017.

358. Taylor P., A review of phase separation in borosilicate glasses, with reference to nuclear fuel waste immobilization. AECL-10173, Atomic Energy of Canada Ltd., Pinawa, MB, Canada, 1990. 1-54.

359. Peeler D. K., Hrma P. R., Predicting liquid immiscibility in multicomponent nuclear waste glasses. PNL-SA--23488, Pacific Northwest National Laboratory, United States, 1994. 1-12.

360. Marra S. L., Jantzen C. M., Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling (U). WSRC-TR-92-142, Rev. 1, Savannah River National Laboratory, Aiken, SC, 1993. 1-40.

361. Costa G. C. C., Xu H. W., Navrotsky A., Thermochemistry of barium hollandites. *J. Am. Ceram. Soc.* 2013;96:1554-1561.

362. Jung I. H., Eriksson G., Wu P., et al., Thermodynamic modeling of the Al₂O₃-Ti₂O₃-TiO₂ system and its applications to the Fe-Al-Ti-O inclusion diagram. *ISIJ Int.* 2009;49:1290-1297.

363. Lejus A. M., Goldberg D., Revcolev.A, On some new compounds formed by the TiO₂ rutile with trivalent and tetravalent metal oxides. *Cr. Acad. Sci. C Chim.* 1966;263:1223-1226.

364. Kamiya S., Tilley R. J. D., Phase relations in pseudobinary system TiO₂-Ga₂O₃. *J. Solid State Chem.* 1977;22:205-216.

365. Bursill L. A., Stone G. G., Tunnel and intergrowth structures in the gallia-rich gallium titanate system. *J. Solid State Chem.* 1981;38:149-157.

366. Schmitz-Dumont O., Reckhard H., Characterization of the Alkali Titanates. *Monatsh. Chem.* 1959;90:134-142.

367. Grey I. E., Madsen I. C., Watts J. A., et al., New cesium titanate layer structures. *J. Solid State Chem.* 1985;58:350-356.

368. Grey I. E., Li C., Madsen I. C., et al., The stability and structure of $Cs_x[Ti_{2-x/4}\square_{x/4}]O_4$, 0.61 < x < 0.65. J. Solid State Chem. 1987;66:7-19.

369. Kwiatkowska J., Grey I. E., Madsen I. C., et al., An x-ray and neutron-diffraction study of $Cs_2Ti_5O_{11}$ and $Cs_2Ti_5O_{11}.X_2O$, X = H,D. *Acta Crystallogr. Sect. B-Struct. Commun.* 1987;43:258-265.

370. Bursill L. A., Smith D. J., Kwiatkowska J., Identifying characteristics of the fibrous cesium titanate Cs₂Ti₅O₁₁. *J. Solid State Chem.* 1987;69:360-368.

371. Peres V., Fabry P., Genet F., et al., Preparations and characterizations of ceramics based on cesium titanate. *J. Eur. Ceram. Soc.* 1994;13:403-410.

372. Kobyakov V. P., Barinova T. V., Sichinava M. A., Phase relations in the TiO₂-CsNO₃ system between 550 and 1140 K. *Inorg. Mater*+. 2011;47:290-295.

373. Lu X. G., Jin Z. P., Thermodynamic assessment of the BaO-TiO₂ quasibinary system. *Calphad-Comput. Coupling Ph. Diagrams Thermochem.* 2000;24:319-338.

374. Sanderson R. T., Chemical Periodicity, New York: Reinhold Publishing Corporation; 1960.

375. Whaley T. P., 8 - Sodium, potassium, rubidium, cesium and francium, 369-529. in The Chemistry of Lithium, Sodium, Potassium, Rubidium, Cesium and Francium. Edited by W. A. Hart, O. F. Beumel, and T. P. Whaley. Pergamon, 1973.

376. Parr R. G., Density functional theory. Annu. Rev. Phys. Chem. 1983;34:631-656.

377. Wu L. L., Schliesser J., Woodfield B. F., et al., Heat capacities, standard entropies and Gibbs energies of Sr-, Rb- and Cs-substituted barium aluminotitanate hollandites. *J. Chem. Thermodyn.* 2016;93:1-7.

378. Hanaor D. A. H., Sorrell C. C., Review of the anatase to rutile phase transformation. *J. Mater. Sci.* 2011;46:855-874.

379. Eriksson G., Pelton A. D., Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MnO-TiO₂, MgO-TiO₂, FeO-TiO₂, Ti₂O₃-TiO₂, Na₂O-TiO₂, and K₂O-TiO₂ systems. *Metall. Trans. B.* 1993;24:795-805.

380. Karkhanavala M. D., Momin A. C., Subsolidus reactions in the system Fe₂O₃-TiO₂. *J. Am. Ceram. Soc.* 1959;42:399-402.

381. Cheynet B., Chaud P., Chevalier P. Y., et al., NUCLEA - Thermodynamic properties and phase equilibria in nuclear systems. *J. Phys. IV.* 2004;113:61-64.

382. Fischer W. A., Hoffmann A., The state diagram iron oxide-aluminum oxide. *Arch. Eisenhuttenwes.* 1956;27:343-346.

383. Vidacak B., Sichen D., Seetharaman S., The existence of a ternary phase in the Al₂O₃-CaO-FeO system. *ISIJ Int.* 2002;42:561-563.

